Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,869 result(s) for "Glycolysis - drug effects"
Sort by:
ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation
The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation. Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30). Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected. Furthermore, T30 (CAF: 869.1 ± 323.2 s; PLA: 735.5 ± 232.2 s, P = 0.58), HRR60s (CAF: 34 ± 8 bpm; PLA: 38 ± 9 bpm, P = 0.44), HRRτ (CAF: 182.9 ± 40.5 s, PLA: 160.3 ± 62.2 s, P = 0.23) and HRRamp (CAF: 70.2 ± 17.4 bpm; PLA: 79.2 ± 17.4 bpm, P = 0.16) were not affected by caffeine ingestion. Caffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation.
Effect of 2 Years of Testosterone Replacement on Insulin Secretion, Insulin Action, Glucose Effectiveness, Hepatic Insulin Clearance, and Postprandial Glucose Turnover in Elderly Men
OBJECTIVE:--We sought to determine whether, and if so the mechanism by which, testosterone replacement improves carbohydrate tolerance. RESEARCH DESIGN AND METHODS--Fifty-five elderly men with relative testosterone deficiency ingested a labeled mixed meal and underwent a frequently sampled labeled intravenous glucose tolerance test before and after either placebo or treatment with testosterone patch (5 mg/day) for 2 years. RESULTS:--Despite restoring bioavailable testosterone to values observed in young men, the change (24 months minus baseline values) in fasting and postprandial glucose, insulin, and C-peptide concentrations and meal appearance, glucose disposal, and endogenous glucose production were virtually identical to those observed after 2 years of placebo. The change over time in insulin and C-peptide concentrations post-intravenous glucose injection also did not differ. Furthermore, the change over time in insulin action and glucose effectiveness (measured with the unlabeled and labeled \"oral\" and \"intravenous\" minimal models), as well as insulin secretion and hepatic insulin clearance (measured with the C-peptide model), did not differ in the testosterone and placebo groups. CONCLUSIONS:--We conclude that 2 years of treatment with testosterone in elderly men does not improve carbohydrate tolerance or alter insulin secretion, insulin action, glucose effectiveness, hepatic insulin clearance, or the pattern of postprandial glucose metabolism. Thus, testosterone deficiency is unlikely the cause of the age-associated deterioration in glucose tolerance commonly observed in elderly men.
Mitochondrial RNA modifications shape metabolic plasticity in metastasis
Aggressive and metastatic cancers show enhanced metabolic plasticity 1 , but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m 5 C) and its derivative 5-formylcytosine (f 5 C) (refs. 2 – 4 )—drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m 5 C at position 34 in mitochondrial tRNA Met . m 5 C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m 5 C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m 5 C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U 13 C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages. Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative 4-octyl-itaconate is anti-inflammatory partly as a result of inhibiting GAPDH enzymatic activity and thereby glycolysis in macrophages.
Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity
Dimethyl fumarate (DMF) is an immunomodulatory compound used to treat multiple sclerosis and psoriasis whose mechanisms of action remain only partially understood. Kornberg et al. found that DMF and its metabolite, monomethyl fumarate, succinate the glycolytic enzyme GAPDH (see the Perspective by Matsushita and Pearce). After DMF treatment, GAPDH was inactivated, and aerobic glycolysis was down-regulated in both myeloid and lymphoid cells. This resulted in down-modulated immune responses because inflammatory immune-cell subsets require aerobic glycolysis. Thus, metabolism can serve as a viable therapeutic target in autoimmune disease. Science , this issue p. 449 ; see also p. 377 An immunomodulatory drug suppresses immune responses by modulating metabolism in activated immune cells. Activated immune cells undergo a metabolic switch to aerobic glycolysis akin to the Warburg effect, thereby presenting a potential therapeutic target in autoimmune disease. Dimethyl fumarate (DMF), a derivative of the Krebs cycle intermediate fumarate, is an immunomodulatory drug used to treat multiple sclerosis and psoriasis. Although its therapeutic mechanism remains uncertain, DMF covalently modifies cysteine residues in a process termed succination. We found that DMF succinates and inactivates the catalytic cysteine of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in mice and humans, both in vitro and in vivo. It thereby down-regulates aerobic glycolysis in activated myeloid and lymphoid cells, which mediates its anti-inflammatory effects. Our results provide mechanistic insight into immune modulation by DMF and represent a proof of concept that aerobic glycolysis is a therapeutic target in autoimmunity.
Succinate is an inflammatory signal that induces IL-1β through HIF-1α
Succinate is identified as a metabolite in innate immune signalling, which leads to enhanced interleukin-1β production during inflammation. Succinate is an innate immunity signal The bacterial endotoxin lipopolysaccharide activates macrophages, as part of the innate immunity response, by inducing a shift from oxidative to glycolytic metabolism. Gillian Tannahill et al . show here that lipopolysaccharide increases levels of the tricarboxylic acid cycle intermediate succinate in macrophages through a metabolic process not previously reported in macrophages, the 'GABA shunt'. Succinate in turn drives the key pro-inflammatory cytokine interleukin-1β. Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis 1 . Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation
Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1β after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility. Myeloid cells are able to utilize a variety of monosaccharides from our diet, including fructose. Here the authors show that when monocytes are reliant on fructose as a carbon energy source they are reprogrammed towards oxidative metabolism, glutamine anaplerosis and a pro-inflammatory phenotype owing to excess pro-inflammatory cytokine production.
Common variants associated with changes in levels of circulating free fatty acids after administration of glucose–insulin–potassium (GIK) therapy in the IMMEDIATE trial
Glucose–insulin–potassium (GIK) therapy may promote a shift from oxygen-wasteful free fatty acid (FFA) metabolism to glycolysis, potentially reducing myocardial damage during ischemia. Genetic variation associated with FFA response to GIK was investigated in an IMMEDIATE (Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency care) sub-study ( n =117). In patients with confirmed acute coronary syndromes, associations between 132 634 variants and 12-h circulating FFA response were assessed. Between initial and 6-h measurements, three LINGO2 variants were associated with increased levels of total FFA ( P -value for 2 degree of freedom test, P 2df ⩽5.51 × 10 −7 ). Lead LINGO2 single-nucleotide polymorphism, rs12003487, was nominally associated with reduced 30-day ejection fraction ( P 2df =0.03). Several LINGO2 signals were linked to alterations in epigenetic profile and gene expression levels. Between 6 and 12 h, rs7017336 nearest to IMPA1 / FABP12 showed an association with decreased saturated FFAs ( P 2df =5.47 × 10 −7 ). Nearest to DUSP26, rs7464104 was associated with a decrease in unsaturated FFAs ( P 2df =5.51 × 10 −7 ). Genetic variation may modify FFA response to GIK, potentially conferring less beneficial outcomes.
LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis
The contribution of inflammation to the chronic joint disease osteoarthritis (OA) is unclear, and this lack of clarity is detrimental to efforts to identify therapeutic targets. Here we show that chondrocytes under inflammatory conditions undergo a metabolic shift that is regulated by NF-κB activation, leading to reprogramming of cell metabolism towards glycolysis and lactate dehydrogenase A (LDHA). Inflammation and metabolism can reciprocally modulate each other to regulate cartilage degradation. LDHA binds to NADH and promotes reactive oxygen species (ROS) to induce catabolic changes through stabilization of IκB-ζ, a critical pro-inflammatory mediator in chondrocytes. IκB-ζ is regulated bi-modally at the stages of transcription and protein degradation. Overall, this work highlights the function of NF-κB activity in the OA joint as well as a ROS promoting function for LDHA and identifies LDHA as a potential therapeutic target for OA treatment. Chondrocytes have altered cellular metabolism in the context of osteoarthritis, but whether and how these changes are associated with inflammation is a controversial area. Here the authors show that inflammatory NF-κB signalling drives a glycolytic shift in chondrocytes and the production of ROS, which drives cartilage catabolism.