Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,031 result(s) for "Glycosyl hydrolase"
Sort by:
Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases
ADP-ribosylation is an important post-translational protein modification, yet enzymes capable of removing the protein-proximal ADP-ribose were unknown. Human macrodomain proteins MacroD1, D2 and C6orf130 are now shown to catalyze mono-ADP-ribose removal. MacroD2 is also shown to reverse the inhibition of GSK3A caused by ARTD10-catalyzed mono-ADP-ribosylation. ADP-ribosylation is an important post-translational protein modification (PTM) that regulates diverse biological processes. ADP-ribosyltransferase diphtheria toxin-like 10 (ARTD10, also known as PARP10) mono-ADP-ribosylates acidic side chains and is one of eighteen ADP-ribosyltransferases that catalyze mono- or poly-ADP-ribosylation of target proteins. Currently, no enzyme is known that reverses ARTD10-catalyzed mono-ADP-ribosylation. Here we report that ARTD10-modified targets are substrates for the macrodomain proteins MacroD1, MacroD2 and C6orf130 from Homo sapiens as well as for the macrodomain protein Af1521 from archaebacteria. Structural modeling and mutagenesis of MacroD1 and MacroD2 revealed a common core structure with Asp102 and His106 of MacroD2 implicated in the hydrolytic reaction. Notably, MacroD2 reversed the ARTD10-catalyzed, mono-ADP-ribose–mediated inhibition of glycogen synthase kinase 3β (GSK3β) in vitro and in cells, thus underlining the physiological and regulatory importance of mono-ADP-ribosylhydrolase activity. Our results establish macrodomain-containing proteins as mono-ADP-ribosylhydrolases and define a class of enzymes that renders mono-ADP-ribosylation a reversible modification.
EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3
Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.
Cracking the “Sugar Code”: A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N - and O -glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O - and N -glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N - and O -glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence
Curtobacterium sp. GD1 was isolated from leaves of conventionally grown soybean in Brazil. It was noteworthy that among all bacteria previously isolated from the same origin, only Curtobacterium sp. GD1 showed a strong chitinase activity. The enzyme was secreted and its production was induced by the presence of colloidal chitin in the medium. The chitinase was partially purified and characterized: molecular weight was approximately 37 kDa and specific activity 90.8 U/mg. Furthermore, Curtobacterium sp. GD1 genome was sequenced and analyzed. Our isolate formed a phylogenetic cluster with four other Curtobacterium spp. strains, with ANIb/ANIm ≥ 98%, representing a new, still non described Curtobacterium species. The circular genome visualization and comparison of genome sequences of strains forming new cluster indicated that most regions within their genomes were highly conserved. The gene associated with chitinase production was identified and the distribution pattern of glycosyl hydrolases genes was assessed. Also, genes associated with catabolism of structural carbohydrates such as oligosaccharides, mixed polysaccharides, plant and animal polysaccharides, as well as genes or gene clusters associated with resistance to antibiotics, toxic compounds and auxin biosynthesis subsystem products were identified. The abundance of putative glycosyl hydrolases in the genome of Curtobacterium sp. GD1 suggests that it has the tools for the hydrolysis of different polysaccharides. Therefore, Curtobacterium sp. GD1 isolated from soybean might be a bioremediator, biocontrol agent, an elicitor of the plant defense responses or simply degrader.
Production of a polyclonal antibody against inosine-uridine preferring nucleoside hydrolase of Acanthamoeba castellanii and its access to diagnosis of Acanthamoeba keratitis
Acanthamoeba keratitis (AK) is a rare disease but its prevalence throughout the globe continues to grow, primarily due to increased contact lens usage. Since early-stage symptoms associated with AK closely resemble those from other corneal infections, accurate diagnosis is difficult and this often results in delayed treatment and exacerbation of the disease, which can lead to permanent visual impairment. Accordingly, developing a rapid Acanthamoeba-specific diagnostic method is highly desired. In the present study, a rapid and differential method for AK diagnosis was developed using the secretory proteins derived from the pathogenic Acanthamoeba. Among the vast quantities of proteins secreted by the pathogenic Acanthamoeba, an open reading frame of the inosine-uridine preferring nucleoside hydrolase (IPNH) gene was obtained. After expressing and purifying the IPNH protein using the pGEX 4T-3 vector system, mice were immunized with the purified proteins for polyclonal antibody generation. Western blot was performed using protein lysates of the human corneal cell, non-pathogenic amoeba, pathogenic amoeba, and clinical amoeba isolate along with lysates from other causes of keratitis such as Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium solani to confirm Acanthamoeba-specificity. Western blot using the polyclonal IPNH antibody revealed that IPNH was Acanthamoeba-specific since these proteins were only observed in lysates of Acanthamoeba origin or its culture media. Our findings indicate that the IPNH antibody of Acanthamoeba may serve as a potential agent for rapid and differential AK diagnosis.
Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections
Phage-derived lysins can hydrolyse bacterial cell walls and show great potential for combating Gram-positive pathogens. In this study, the potential of LysEF-P10, a new lysin derived from a isolated Enterococcus faecalis phage EF-P10, as an alternative treatment for multidrug-resistant E. faecalis infections, was studied. LysEF-P10 shares only 61% amino acid identity with its closest homologues. Four proteins were expressed: LysEF-P10, the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain (LysEF-P10C), the putative binding domain (LysEF-P10B), and a fusion recombination protein (LysEF-P10B-green fluorescent protein). Only LysEF-P10 showed highly efficient, broad-spectrum bactericidal activity against E. faecalis . Several key functional residues, including the Cys-His-Asn triplet and the calcium-binding site, were confirmed using 3D structure prediction, BLAST and mutation analys. We also found that calcium can switch LysEF-P10 between its active and inactive states and that LysEF-P10B is responsible for binding E. faecalis cells. A single administration of LysEF-P10 (5 μg) was sufficient to protect mice against lethal vancomycin-resistant Enterococcus faecalis (VREF) infection, and LysEF-P10-specific antibody did not affect its bactericidal activity or treatment effect. Moreover, LysEF-P10 reduced the number of Enterococcus colonies and alleviated the gut microbiota imbalance caused by VREF. These results indicate that LysEF-P10 might be an alternative treatment for multidrug-resistant E. faecalis infections.
Identification and characterization of a novel bifunctional cellulase/hemicellulase from a soil metagenomic library
Microbes, especially the uncultured microbes, have been considered as an important resource for discovery of novel cellulases. In this study, a novel bifunctional cellulase/hemicellulase (ZFYN184) was identified by functional screening of a soil metagenomic library. Sequence analysis indicated that ZFYN184 shared at best 39% identity with glycoside hydrolase family 44 (GH44) proteins and contained a glutamic acid residue at 235 acting as the catalytic proton donor in hydrolysis of polysaccharides. The recombinant ZFYN184 was expressed in Escherichia coli BL21 (DE3), and the biochemical profiles of the enzyme, including optimum pH and temperature, pH and thermal stabilities, tolerance to various additives, and substrate specificity, were determined. ZFYN184 possessed strong endo-β-1,4-glucanase and endo-1,4-β-mannanase activities, as well as weak xylanase activity, while all these hydrolytic activities were derived from a single catalytic domain in this GH44 enzyme.Key points• Discovery a novel bifunctional glycosyl hydrolase from uncultured microorganism.• ZFYN184 contains a single catalytic domain belonged to GH44.
Bacterial chitinases: genetics, engineering and applications
Chitinases are a group of enzymes that catalyze chitin hydrolysis and are present in all domains of life. Chitinases belong to different glycosyl hydrolase families with great diversity in their sequences. Microorganisms such as bacteria and fungi produce chitinases for nutrition, and energy, and to parasitize the chitinous hosts. But chitinases from bacteria are of special interest due to their ubiquitous nature and ability to perform under extreme conditions. Chitinases produced by bacteria have been explored for their use in agriculture and industry. In agriculture, their main role is to control chitin-containing insect pests, fungal pathogens, and nematodes. In the seafood industry, they found their role in the management of processing wastes which are mainly chitinous substances. Chitinases are also used to synthesize low molecular weight chitooligomers which are proven bioactive compounds with activities such as anti-tumour, antimicrobial, and immunity modulation. Considering their importance in ecology and biotechnological applications, several bacterial chitinases have been studied in the last two decades. Despite their potential, bacterial chitinases have a few limitations such as low production and lack of secretion systems which make the wild-type enzymes unfit for their applications in industries and other allied sectors. This review is an attempt to collate significant works in bacterial chitinases and their application in various industries and the employment of various tools and techniques for improvement to meet industrial requirements.
Active DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes
The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA—directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.
Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense
Selection pressure exerted by insects and microorganisms shapes the diversity of plant secondary metabolites. We identified a metabolic pathway for glucosinolates, known insect deterrents, that differs from the pathway activated by chewing insects. This pathway is active in living plant cells, may contribute to glucosinolate turnover, and has been recruited for broad-spectrum antifungal defense responses. The Arabidopsis CYP81F2 gene encodes a P450 monooxygenase that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-ylmethylglucosinolate, which in turn is activated by the atypical PEN2 myrosinase (a type of β-thioglucoside glucohydrolase) for antifungal defense. We propose that reiterated enzymatic cycles, controlling the generation of toxic molecules and their detoxification, enable the recruitment of glucosinolates in defense responses.