Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
335 result(s) for "Gnats."
Sort by:
Glowworms are not worms!
An introduction to glowworms, including where they live, what they look like, why they glow, and more.
Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae)
Background and Aims Pterostylisis an Australasian terrestrial orchid genus of more than 400 species, most of which use a motile, touch-sensitive labellum to trap dipteran pollinators. Despite studies dating back to 1872, the mechanism of pollinator attraction has remained elusive. This study tested whether the fungus gnat-pollinated Pterostylis sanguinea secures pollination by sexual deception.MethodsThe literature was used to establish criteria for confirming sexual deception as a pollination strategy. Observations and video recordings allowed quantification of each step of the pollination process. Each floral visitor was sexed and DNA barcoding was used to evaluate the degree of pollinator specificity. Following observations that attraction to the flowers is by chemical cues, experimental dissection of flowers was used to determine the source of the sexual attractant and the effect of labellum orientation on sexual attraction. Fruit set was quantified for 19 populations to test for a relationship with plant density and population size.Key ResultsA single species of male gnat (Mycetophilidae) visited and pollinated the rewardless flowers. The gnats often showed probing copulatory behaviour on the labellum, leading to its triggering and the temporary entrapment of the gnat in the flower. Pollen deposition and removal occurred as the gnat escaped from the flower via the reproductive structures. The labellum was the sole source of the chemical attractant. Gnats always alighted on the labellum facing upwards, but when it was rotated 180 ° they attempted copulation less frequently. Pollination rate showed no relationship with orchid population size or plant density.ConclusionsThis study confirms for the first time that highly specific pollination by fungus gnats is achieved by sexual deception in Pterostylis. It is predicted that sexual deception will be widespread in the genus, although the diversity of floral forms suggests that other mechanisms may also operate.
Diary of a worm : Nat the gnat
A skill-building reader starring Worm finds him taking a turn caring for a class pet gnat that accidentally escapes from its tank.
Biological Activity of Insecticides Against Bradysia ocellaris Larvae (Diptera: Sciaridae): A New Pest of Strawberry Crops
Black fungus gnat larvae are one of the primary insect pests in greenhouse and nursery crops, and Bradysia ocellaris (Comstock) (Diptera: Sciaridae) is one common pest species. This pest is difficult to control in Brazil because of the absence of registered insecticides. The aim of this work was to evaluate the effects of some insecticides on B. ocellaris larvae. We also verified that the insect growth regulator novaluron caused the deformation of B. ocellaris. Of the insecticides evaluated, malationa, and thiamethoxam showed high mortality rate (96 and 86 % respectively). Further, bioassays with acetamiprid (78 %) and novaluron (44 %) showed that the lethal concentrations (LC50) were 19.18 mg a.i.L-1 at 48h to acetamiprid and 1.24 mg a.i.L-1 at 120 h to novaluron. When larvae were fed on potato pieces treated with novaluron, independently of the dose, the mortality rate was 100 %, since no larvae could complete the development cycle. Among all evaluated insecticides, only acetamiprid and novaluron were considered effective tools for control of B. ocellaris larvae under laboratory conditions.
Pollination by fungus gnats and associated floral characteristics in five families of the Japanese flora
Pollination by fungus gnats (Mycetophilidae and Sciaridae) is uncommon, but is nevertheless known to occur in 20 genera among eight angiosperm families. Because many fungus gnat-pollinated plants possess a dark red floral display, we hypothesized that fungus gnat pollination is more widespread among plants with similar floral display than currently known. We thus studied the pollination biology of flowers with dark red pigmentation in five families, focusing particularly on plants having small, flat, actinomorphic flowers with exposed nectaries and short stamens, because these floral characteristics mirror those of a known fungus gnat-pollinated genus (Mitella). We observed daytime and night-time floral visitors for a total of 194.5 h in Aucuba japonica (Garryaceae), Euonymus spp. (Celastraceae), Disanthus cercidifolius (Hamamelidaceae), Micranthes fusca (Saxifragaceae) and Streptopus streptopoides (Liliaceae). Visitors were categorized into functional groups, and a pollination importance index (PII) was calculated for each functional group based on visitation frequency, pollen load and behaviour on flowers. Fungus gnats were dominant among the 1762 insects observed (36-92 % depending on the plant species) and were the most important pollinators among all plants studied (PII: 0.529-1). Fungus gnat visits occurred during the daytime and, more frequently, at dusk. Most often, pollen grains became clumped on the ventral side of the head and/or thorax as the short-proboscid fungus gnats foraged on nectar and came into contact with anthers located close to the flower base. Pollination by fungus gnats is probably more common than previously thought, especially in habitats similar to those of the plants studied (moist forest understorey, streamside or subalpine meadow) where fungus gnats are abundant year-round. Our results further suggest that there may be a previously unnoticed association between fungus gnat pollination and dark red coloration, and a shared overall floral architecture among the plants studied.
Hidden in Plain Sight: Comprehensive Molecular Phylogeny of Keroplatidae and Lygistorrhinidae (Diptera) Reveals Parallel Evolution and Leads to a Revised Family Classification
We provide the first molecular phylogeny of Keroplatidae and Lygistorrhinidae, families of fungus gnats (Diptera: Bibionomorpha: Sciaroidea). Phylogenies reconstructed by Maximum Likelihood and Bayesian methods, based on four nuclear and four mitochondrial gene markers (5106 base pairs) sequenced for 75 genera and 105 species, show Keroplatidae as monophyletic only with the family Lygistorrhinidae included, herewith treated as the subfamily Lygistorrhininae stat. nov. The subfamily Arachnocampinae is retained in the family, although lowering its overall support. An early branching clade, comprising species of Platyura Meigen, 1803 and Paleoplatyura melanderi Fisher, 1941, forms subfamily Platyurinae Loew, 1850 stat. nov. The subfamilies Sciarokeroplatinae and Macrocerinae grouped together with three genera considered here as Keroplatidae incertae sedis. Subfamily Lygistorrhininae forms a sister clade to subfamily Keroplatinae, both retained monophyletic with high support. The traditional division of the subfamily Keroplatinae into the tribes Orfeliini and Keroplatini appears as outdated, resting largely on adaptive characters prone to parallel evolution. We find support for an alternative tribe corresponding to the Cloeophoromyia–Asindulum genus group, but a tribal reclassification of the Keroplatinae is left for future studies. The genus Heteropterna Skuse, 1888 is considered as identical with Ctenoceridion Matile, 1972 syn. nov.
A symbiotic balancing act
Mycorrhizal associations in mycoheterotrophic plants are generally more specialized than in autotrophs. Mycoheterotrophs typically bear small, inconspicuous flowers that often self-pollinate to maximize seed set, although some have structurally complex flowers indicative of xenogamy. A trade-off has previously been proposed between specialization in these above- and below-ground symbioses, although empirical data are lacking. We used next-generation DNA sequencing to compare the mycorrhizal communities from the roots of a mycoheterotrophic species, Thismia tentaculata (Thismiaceae), and its neighbouring autotrophs. We furthermore conducted detailed assessments of floral phenology and pollination ecology, and performed artificial pollination experiments to determine the breeding system. Thismia tentaculata maintains a symbiotic association with a single arbuscular mycorrhizal Rhizophagus species. The flowers are pollinated by a single species of fungus gnats (Corynoptera, Sciaridae), which are attracted by the yellow pigments and are temporarily restrained within the perianth chamber before departing via apertures between the anthers. The plants are self-compatible but predominantly xenogamous. Our findings demonstrate that T. tentaculata maintains highly specialized associations with pollinators and mycorrhizal fungi, both of which are widely distributed. We suggest that specialization in multiple symbiotic interactions is possible in mycoheterotrophs if redundant selective pressures are not exerted to further restrict an already constrained suite of life-history traits.
Catalogue of the Diptera (Insecta) of Morocco— an annotated checklist, with distributions and a bibliography
The faunistic knowledge of the Diptera of Morocco recorded from 1787 to 2021 is summarized and updated in this first catalogue of Moroccan Diptera species. A total of 3057 species, classified into 948 genera and 93 families (21 Nematocera and 72 Brachycera), are listed. Taxa (superfamily, family, genus and species) have been updated according to current interpretations, based on reviews in the literature, the expertise of authors and contributors, and recently conducted fieldwork. Data to compile this catalogue were primarily gathered from the literature. In total, 1225 references were consulted and some information was also obtained from online databases. Each family was reviewed and the checklist updated by the respective taxon expert(s), including the number of species that can be expected for that family in Morocco. For each valid species, synonyms known to have been used for published records from Morocco are listed under the currently accepted name. Where available, distribution within Morocco is also included. One new combination is proposed: Assuania melanoleuca (Séguy, 1941), comb. nov. (Chloropidae).
Bibionomorph gnats (Diptera: Nematocera) collected from Lažany village, Slovakia
We present records of 103 fly species from six families of Bibionomorpha (namely: Anisopodidae, Ditomyiidae, Bolitophilidae, Diadocidiidae, Keroplatidae, and Mycetophilidae) collected by a single Malaise trap in an Eastern Slovakia locality during the vegetation period in 2023. Data on five species, viz., ( ) (Meigen, 1818), Meigen, 1818, Edwards, 1925, Lundstrom, 1909, and Edwards, 1925 (all Mycetophilidae) represent the first records for the fauna of Slovakia, and habitus photographs of these species have been provided. A very rare Central European species – Matile, 1978 – has also been recorded and photographed.