Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Gold Compounds - pharmacokinetics"
Sort by:
Size-dependent clearance of gold nanoparticles from lungs of Sprague–Dawley rats after short-term inhalation exposure
Gold nanoparticles are known to be distributed to many tissues following their oral, inhalation, or intravenous exposure. Information on the biodistribution and clearance of gold nanoparticles from these tissues is, therefore, important to understand their behavior in vivo. To study the effect of size on the biodistribution of gold nanoparticles, Sprague–Dawley rats were exposed by inhalation to small gold nanoparticles (13 nm in diameter on average) at an exposure concentration of 12.8 ± 2.42 µg/m 3 , and to large gold nanoparticles (105 nm in diameter on average) at an exposure concentration of 13.7 ± 1.32 µg/m 3 . The experimental animals were exposed to the gold nanoparticles and the control animals to fresh air for 5 days (6 h/day), followed by a recovery period of 1, 3, and 28 days in fresh air. None of the exposed animals exhibited any toxic response to the gold nanoparticles. Despite the difference in size, both small and large gold nanoparticles deposited mainly in rat lungs. Their biodistribution from the lungs to secondary target organs was significantly higher with the small compared to the large gold nanoparticles. While the large gold nanoparticles were only found in the blood, the small gold nanoparticles were detected in the liver, spleen, brain, testes, and blood. In addition, the elimination half-life of the small gold nanoparticles from the lungs was significantly shorter than that of the large gold nanoparticles. The present data may, therefore, suggest that the smaller gold nanoparticles are able to translocate from the lungs, the primary exposure organ to extrapulmonary organs at a faster rate than the larger gold nanoparticles and thus confirming previous observations reported in the literature.
Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments
Background The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. Methods A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses ( i.e., 25, 50, 100, 150, 200 ng/cm 2 ) and sizes ( i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods ( i.e., 0, 2, 8, 24, 48, 72 h). Results The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm 2 ). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. Conclusion Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern.
Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro
Our previous finding that skin-derived and muscle-derived molecules can be used to sort regenerating rat sciatic nerve axons evoked questions concerning neuron-target interactions at the level of single cells, which prompted the present study. The results show that dorsal root ganglion (DRG) neurons co-cultured with fibroblast-like skin-derived cells emit many neurites. These have a proximal linear segment and a distal network of beaded branches in direct relation to skin-derived cells. Electron microscopic examination of such co-cultures showed bundles of neurites at some distance from the target cells and single profiles closely apposed to subjacent cells. RNase protection assay revealed that cultivated skin-derived cells express nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). In co-cultures of DRG neurons and 3T3 fibroblasts overexpressing either of the neurotrophins produced by skin-derived cells the picture varied. NT-3 transfected 3T3 fibroblasts gave a growth pattern similar to that seen with skin-derived cells. Neurons co-cultured with mock-transfected 3T3 fibroblasts were small and showed weak neurite growth. In co-cultures with a membrane insert between skin-derived cells or 3T3 fibroblasts and DRG neurons few neurons survived and neurite growth was very sparse. We conclude that skin-derived cells stimulate neurite growth from sensory neurons in vitro, that these cells produce NGF, BDNF, NT-3 and NT-4 and that 3T3 fibroblasts producing NT-3 mimic the effect of skin-derived cells on sensory neurons in co-culture. Finally the results suggest that cell surface molecules are important for neuritogenesis.
Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy
Background Platinum-based anticancer drugs are widely used in the chemotherapy of human neoplasms. The major obstacle for the clinical use of this class of drugs is the development of resistance and toxicity. It is therefore very important to understand the chemical properties, transport and metabolic pathways and mechanism of actions of these compounds. There is a large body of evidence that therapeutic and toxic effects of platinum drugs on cells are not only a consequence of covalent adducts formation between platinum complexes and DNA but also with RNA and many proteins. These processes determine molecular mechanisms that underlie resistance to platinum drugs as well as their toxicity. Increased expression levels of various transporters and increased repair of platinum-DNA adducts are both considered as the most significant processes in the development of drug resistance. Functional genomics has an increasing role in predicting patients' responses to platinum drugs. Genetic polymorphisms affecting these processes may play an important role and constitute the basis for individualized approach to cancer therapy. Similar processes may also influence therapeutic potential of nonplatinum metal compounds with anticancer activity. Conclusions Cisplatin is the most frequently used platinum based chemotherapeutic agent that is clinically proven to combat different types of cancers and sarcomas.
Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches
An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood-brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed.
Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy
Gold nanoparticles have attracted significant interest in cancer diagnosis and treatment. Herein, we evaluated the theranostic potential of dithiolated diethylenetriamine pentaacetic acid (DTDTPA) conjugated AuNPs (Au@DTDTPA) for CT-contrast enhancement and radiosensitization in prostate cancer. assays determined Au@DTDTPA uptake, cytotoxicity, radiosensitizing potential and DNA damage profiles. Human PC3 xenograft tumor models were used to determine CT enhancement and radiation modulating effects . Cells exposed to nanoparticles and radiation observed significant additional reduction in survival compared with radiation only. Au@DTDTPA produced a CT enhancement of 10% and a significant extension in tumor growth delay from 16.9 days to 38.3 compared with radiation only. This study demonstrates the potential of Au@DTDTPA to enhance CT-image contrast and simultaneously increases the radiosensitivity of prostate tumors.
Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats
To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. The CTAB-capped gold nanorods were almost immediately (<15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purposes.
In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice
Gold nanoparticles (AuNPs) of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs. Male C57BL/6 mice were injected intraperitoneally (IP) with a single dose of AuNPs (7.85 μg AuNPs/g). Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR. At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney). Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders.
An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols
Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M–S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.
Hybrid Gold(I) NHC-Artemether Complexes to Target Falciparum Malaria Parasites
The emergence of Plasmodium falciparum parasites, responsible for malaria disease, resistant to antiplasmodial drugs including the artemisinins, represents a major threat to public health. Therefore, the development of new antimalarial drugs or combinations is urgently required. In this context, several hybrid molecules combining a dihydroartemisinin derivative and gold(I) N-heterocyclic carbene (NHC) complexes have been synthesized based on the different modes of action of the two compounds. The antiplasmodial activity of these molecules was assessed in vitro as well as their cytotoxicity against mammalian cells. All the hybrid molecules tested showed efficacy against P. falciparum, in a nanomolar range for the most active, associated with a low cytotoxicity. However, cross-resistance between artemisinin and these hybrid molecules was evidenced. These results underline a fear about the risk of cross-resistance between artemisinins and new antimalarial drugs based on an endoperoxide part. This study thus raises concerns about the use of such molecules in future therapeutic malaria policies.