Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,081
result(s) for
"Granule cells"
Sort by:
Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum
by
Hawkes, Richard
,
Goldowitz, Daniel
,
Casoni, Filippo
in
Bergmann glial fibers
,
Cerebellum
,
Climbing
2021
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Journal Article
Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma
2021
Background
Cerebellar neurogenesis involves the generation of large numbers of cerebellar granule neurons (GNs) throughout development of the cerebellum, a process that involves tight regulation of proliferation and differentiation of granule neuron progenitors (GNPs). A number of transcriptional regulators, including
Math1
, and the signaling molecules Wnt and Shh have been shown to have important roles in GNP proliferation and differentiation, and deregulation of granule cell development has been reported to be associated with the pathogenesis of medulloblastoma. While the progenitor/differentiation states of cerebellar granule cells have been broadly investigated, a more detailed association between developmental differentiation programs and spatial gene expression patterns, and how these lead to differential generation of distinct types of medulloblastoma remains poorly understood. Here, we provide a comparative single-cell spatial transcriptomics analysis to better understand the similarities and differences between developing granule and medulloblastoma cells.
Results
To acquire an enhanced understanding of the precise cellular states of developing cerebellar granule cells, we performed single-cell RNA sequencing of 24,919 murine cerebellar cells from granule neuron-specific reporter mice (
Math1-GFP
;
Dcx-DsRed
mice). Our single-cell analysis revealed that there are four major states of developing cerebellar granule cells, including two subsets of granule progenitors and two subsets of differentiating/differentiated granule neurons. Further spatial transcriptomics technology enabled visualization of their spatial locations in cerebellum. In addition, we performed single-cell RNA sequencing of 18,372 cells from
Patched
+/−
mutant mice and found that the transformed granule cells in medulloblastoma closely resembled developing granule neurons of varying differentiation states. However, transformed granule neuron progenitors in medulloblastoma exhibit noticeably less tendency to differentiate compared with cells in normal development.
Conclusion
In sum, our study revealed the cellular and spatial organization of the detailed states of cerebellar granule cells and provided direct evidence for the similarities and discrepancies between normal cerebellar development and tumorigenesis.
Journal Article
The heterogeneous population of granule cells contributes to pattern separation of the dentate gyrus neural network
2024
The dentate gyrus (DG) is crucial for distinguishing similar events through pattern separation. It has been proposed that sparse firing granule cells (GCs) perform these computational functions in the DG. GCs are the principal neurons of the DG, and it has been reported that they form a heterogeneous population, including semilunar granule cells (SGCs) and adult-born granule cells (adult-born GCs), both of which have different physiological properties from the GCs. Given their undeniable interactions with GCs, it is important to investigate how the different subpopulations of GCs contribute to pattern separation. By constructing a biologically relevant computational model of the DG, we found that SGCs and adult-born GCs can dynamically regulate pattern separation. Specifically, SGCs and 4–8-week-old adult-born GCs contribute to pattern separation. However, 0–4-week-old adult-born GCs initially increase pattern separation efficiency, then decrease it. Furthermore, SGCs and 4–8-week-old adult-born GCs enhance the sparse firing of GCs, thereby improving pattern separation efficiency. Regarding 0–4-week-old adult-born GCs, the net effect of mossy cells (MCs) on GCs shifts from inhibition to excitation as adult-born GCs mature, resulting in a decrease in pattern separation efficiency.
Journal Article
Neuronal organization of olfactory bulb circuits
2014
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Journal Article
Regulation of cerebellar network development by granule cells and their molecules
by
Tanaka-Yamamoto, Keiko
,
Yamamoto, Yukio
,
Kim, Muwoong
in
Cell division
,
Cerebellum
,
Cognition
2023
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Journal Article
A Single Dose of 5-MeO-DMT Stimulates Cell Proliferation, Neuronal Survivability, Morphological and Functional Changes in Adult Mice Ventral Dentate Gyrus
by
Leão, Richardson N.
,
Petiz, Lyvia Lintzmaier
,
Moulin, Thiago C.
in
5-MeO-DMT
,
Action potential
,
adult neurogenesis
2018
The subgranular zone (SGZ) of dentate gyrus (DG) is one of the few regions in which neurogenesis is maintained throughout adulthood. It is believed that newborn neurons in this region encode temporal information about partially overlapping contextual memories. The 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring compound capable of inducing a powerful psychedelic state. Recently, it has been suggested that DMT analogs may be used in the treatment of mood disorders. Due to the strong link between altered neurogenesis and mood disorders, we tested whether 5-MeO-DMT is capable of increasing DG cell proliferation. We show that a single intracerebroventricular (ICV) injection of 5-MeO-DMT increases the number of Bromodeoxyuridine (BrdU+) cells in adult mice DG. Moreover, using a transgenic animal expressing tamoxifen-dependent Cre recombinase under doublecortin promoter, we found that 5 Meo-DMT treated mice had a higher number of newborn DG Granule cells (GC). We also showed that these DG GC have more complex dendritic morphology after 5-MeO-DMT. Lastly, newborn GC treated with 5-MeO-DMT, display shorter afterhyperpolarization (AHP) potentials and higher action potential (AP) threshold compared. Our findings show that 5-MeO-DMT affects neurogenesis and this effect may contribute to the known antidepressant properties of DMT-derived compounds.
Journal Article
Cellular and circuit features distinguish mouse dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation
2025
The dentate gyrus is critical for spatial memory formation and shows task-related activation of cellular ensembles considered as memory engrams. Semilunar granule cells (SGCs), a sparse dentate projection neuron subtype, were reported to be enriched among behaviorally activated neurons. By examining SGCs and granule cells (GCs) labeled during contextual memory formation in TRAP2 mice, we empirically tested competing hypotheses for GC and SGC recruitment into memory ensembles. Consistent with more excitable neurons being recruited into memory ensembles, SGCs showed greater sustained firing than GCs. Additionally, labeled SGCs showed less adapting firing than unlabeled SGCs. The lack of glutamatergic connections between behaviorally labeled SGCs and GCs in our recordings is inconsistent with SGC-driven local circuit feedforward excitation underlying ensemble recruitment. Moreover, there was little evidence for individual SGCs or labeled neuronal ensembles supporting lateral inhibition of unlabeled neurons. Instead, labeled GCs and SGCs received more spontaneous excitatory synaptic inputs than their unlabeled counterparts. Labeled neuronal pairs received more temporally correlated spontaneous excitatory synaptic inputs than labeled-unlabeled neuronal pairs. These findings challenge the proposal that SGCs drive dentate GC ensemble refinement, while supporting a role for intrinsic excitability and correlated inputs in preferential SGC recruitment to contextual memory engrams.
Journal Article
Altered temporal sequence of transcriptional regulators in the generation of human cerebellar granule cells
by
Hatten, Mary E
,
Kocabas, Arif
,
Buchholz, David E
in
Animals
,
Antigens, Nuclear - genetics
,
Antigens, Nuclear - metabolism
2021
Brain development is regulated by conserved transcriptional programs across species, but little is known about the divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with nonhuman primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSCs). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.
Journal Article
Gap Junctions May Have A Computational Function In The Cerebellum: A Hypothesis
2024
In the cerebellum, granule cells make parallel fibre contact on (and excite) Golgi cells and Golgi cells inhibit granule cells, forming an open feedback loop. Parallel fibres excite Golgi cells synaptically, each making a single contact. Golgi cells inhibit granule cells in a structure called a glomerulus almost exclusively by GABA spillover acting through extrasynaptic GABA
A
receptors. Golgi cells are connected dendritically by gap junctions. It has long been suspected that feedback contributes to homeostatic regulation of parallel fibre signals activity, causing the fraction of the population that are active to be maintained at a low level. We present a detailed neurophysiological and computationally-rendered model of functionally grouped Golgi cells which can infer the density of parallel fibre signals activity and convert it into proportional modulation of inhibition of granule cells. The conversion is unlearned and not actively computed; rather, output is simply the computational effect of cell morphology and network architecture. Unexpectedly, the conversion becomes more precise at low density, suggesting that self-regulation is attracted to sparse code, because it is stable. A computational function of gap junctions may not be confined to the cerebellum.
Journal Article
Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis
by
Marras, Luisa
,
Olianas, Maria C
,
Onali Pierluigi
in
Anticancer properties
,
Apoptosis
,
Brain damage
2020
The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.
Journal Article