Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,104 result(s) for "Granzymes - metabolism"
Sort by:
Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination
Systems vaccinology allows cutting-edge analysis of innate biomarkers of vaccine efficacy. We have been exploring novel strategies to shape the adaptive immune response, by targeting innate immune cells through novel immunization routes. This randomized phase I/II clinical study (n=60 healthy subjects aged 18-45 years old) used transcriptomic analysis to discover early biomarkers of immune response quality after transcutaneous (t.c.), intradermal (i.d.), and intramuscular (i.m.) administration of a trivalent influenza vaccine (TIV season 2012-2013) (1:1:1 ratio). Safety and immunogenicity (hemagglutinin inhibition (HI), microneutralization (MN) antibodies and CD4, CD8 effector T cells) were measured at baseline Day (D)0 and at D21. Blood transcriptome was analyzed at D0 and D1. TIV-specific CD8+GranzymeB+(GRZ) T cells appeared in more individuals immunized by the t.c. and i.d. routes, while immunization by the i.d. and i.m. routes prompted high levels of HI antibody titers and MN against A/H1N1 and A/H3N2 influenza viral strains. The early innate gene signature anticipated immunological outcome by discriminating two clusters of individuals with either distinct humoral or CD8 cytotoxic responses. Several pathways explained this dichotomy confirmed by nine genes and serum level of CXCL10 were correlated with either TIV-specific cytotoxic CD8+GRZ+ T-cell or antibody responses. A logistic regression analysis demonstrated that these nine genes and serum levels of CXCL10 (D1/D0) best foreseen TIV-specific CD8+GRZ+ T-cell and antibody responses at D21. This study provides new insight into the impact of immunization routes and innate signature in the quality of adaptive immune responses.
Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery
Background NK cells contribute to tumour surveillance, inhibition of growth and dissemination by cytotoxicity, secretion of cytokines and interaction with immune cells. Their precise role in human breast cancer is unclear and the effect of therapy poorly studied. The purpose of our study was to characterise NK cells in women with large (≥3 cm) and locally advanced (T3–4, N1–2, M0) breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC) and surgery, and to ascertain their possible contribution to a pathological complete response (pCR). Methods Women with LLABCs (n = 25) and healthy female donors [HFDs (n = 10)] were studied. Pathological responses in the breast were assessed using established criteria. Blood samples were collected pre and post NAC and surgery. Flow cytometry and labelled monoclonal antibodies established absolute numbers (AbNs) and percentages (%) of NK cells, and expressing granzyme B/perforin and NKG2D. In vitro NK cytotoxicity was assessed and NK cells and cytokines (IL-2, INF-γ, TGF-β) documented in tumours using immunohistochemical techniques. Data was analysed by SPSS. Results Women with LLABCs had significantly reduced AbNs (160.00 ± 40.00 cells/µl) but not % of NK cells, compared with HFDs (NK: 266.78 ± 55.00 cells/µl; p = 0.020). NAC enhanced the AbN (p = 0.001) and % (p = 0.006) of NK cells in patients with good pathological responses. Granzyme B + /perforin + cells were significantly reduced (43.41 ± 4.00%), compared with HFDs (60.26 ± 7.00%; p = 0.003). NAC increased the % in good (p = 0.006) and poor (p = 0.005) pathological responders. Pretreatment NK cytotoxicity was significantly reduced in good (37.80 ± 8.05%) and poor (22.80 ± 7.97%) responders (p = 0.001) but remained unchanged following NAC. NK-NKG2D + cells were unaltered and unaffected by NAC; NKG2D expression was increased in patients with a pCR (p = 0.001). Surgery following NAC was not beneficial, except in those with a pCR. Tumour-infiltrating NK cells were infrequent but increased peritumourally (p = 0.005) showing a significant correlation (p = 0.004) between CD56 + cells and grade of response. Tumour cytokines had no effect. Conclusion Women with LLABCs have inhibited blood innate immunity, variably reversed by NAC (especially with tumour pCRs), which returned to pretreatment levels following surgery. These and in situ tumour findings suggest a role for NK cells in NAC-induced breast pCR.
Regulatory B Cells Expressing Granzyme B from Tolerant Renal Transplant Patients: Highly Differentiated B Cells with a Unique Pathway with a Specific Regulatory Profile and Strong Interactions with Immune System Cells
The aim of our study was to determine whether granzyme B-expressing regulatory B cells (GZMB+ B cells) are enriched in the blood of transplant patients with renal graft tolerance. To achieve this goal, we analysed two single-cell RNA sequencing (scRNAseq) datasets: (1) peripheral blood mononuclear cells (PBMCs), including GZMB+ B cells from renal transplant patients, i.e., patients with stable graft function on conventional immunosuppressive treatment (STA, n = 3), drug-free tolerant patients (TOL, n = 3), and patients with antibody-mediated rejection (ABMR, n = 3), and (2) ex-vivo-induced GZMB+ B cells from these groups. In the patient PBMCs, we first showed that natural GZMB+ B cells were enriched in genes specific to Natural Killer (NK) cells (such as NKG7 and KLRD1) and regulatory B cells (such as GZMB, IL10, and CCL4). We performed a pseudotemporal trajectory analysis of natural GZMB+ B cells and showed that they were highly differentiated B cells with a trajectory that is very different from that of conventional memory B cells and linked to the transcription factor KLF13. By specifically analysing GZMB+ natural B cells in TOLs, we found that these cells had a very specific transcriptomic profile associated with a reduction in the expression of HLA molecules, apoptosis, and the inflammatory response (in general) in the blood and that this signature was conserved after ex vivo induction, with the induction of genes associated with migration processes, such as CCR7, CCL3, or CCL4. An analysis of receptor/ligand interactions between these GZMB+/− natural B cells and all of the immune cells present in PBMCs also demonstrated that GZMB+ B cells were the B cells that carried the most ligands and had the most interactions with other immune cells, particularly in tolerant patients. Finally, we showed that these GZMB+ B cells were able to infiltrate the graft under inflammatory conditions, thus suggesting that they can act in locations where immune events occur.
Sporozoite Immunization of Human Volunteers under Mefloquine Prophylaxis Is Safe, Immunogenic and Protective: A Double-Blind Randomized Controlled Clinical Trial
Immunization of healthy volunteers with chloroquine ChemoProphylaxis and Sporozoites (CPS-CQ) efficiently and reproducibly induces dose-dependent and long-lasting protection against homologous Plasmodium falciparum challenge. Here, we studied whether chloroquine can be replaced by mefloquine, which is the only other licensed anti-malarial chemoprophylactic drug that does not affect pre-erythrocytic stages, exposure to which is considered essential for induction of protection by CPS immunization. In a double blind randomized controlled clinical trial, volunteers under either chloroquine prophylaxis (CPS-CQ, n = 5) or mefloquine prophylaxis (CPS-MQ, n = 10) received three sub-optimal CPS immunizations by bites from eight P. falciparum infected mosquitoes each, at monthly intervals. Four control volunteers received mefloquine prophylaxis and bites from uninfected mosquitoes. CPS-MQ immunization is safe and equally potent compared to CPS-CQ inducing protection in 7/10 (70%) versus 3/5 (60%) volunteers, respectively. Furthermore, specific antibody levels and cellular immune memory responses were comparable between both groups. We therefore conclude that mefloquine and chloroquine are equally effective in CPS-induced immune responses and protection. Trial registration: ClinicalTrials.gov NCT01422954.
Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans
► Oral immunization with rAd elicits γ-IFN and granzyme B producing T cells in humans ► Granzyme B responses can be boosted with oral immunization ► Oral immunization with rAd has a positive safety profile ► Oral immunization with rAd does not elicit substantial anti-vector antibody responses. To test the safety and immunogenicity of an orally delivered avian influenza vaccine. The vaccine has a non-replicating adenovirus type 5 vector backbone which expresses hemagglutinin from avian influenza and a TLR3 ligand as an adjuvant. Forty-two subjects were randomized into 3 groups dosed with either 1×1010, 1×109, or 1×108IU of the vaccine administered in capsules. Twelve subjects were vaccinated with identical capsules containing placebo. A portion of the 1×109 dose group were immunized a second time 4 weeks after the first immunization. The safety of the vaccine was assessed by measuring the frequency and severity of adverse events in placebo versus vaccine treated subjects. IFN-γ and granzyme B ELISpot assays were used to assess immunogenicity. The vaccine had a positive safety profile with no treatment emergent adverse events reported above grade 1, and with an adverse event frequency in the treated groups no greater than placebo. Antigen specific cytotoxic and IFN-γ responses were induced in a dose dependent manner and cytotoxic responses were boosted after a second vaccination. This first in man clinical trial demonstrates that an orally delivered adenovirus vectored vaccine can induce immune responses to antigen with a favorable safety profile. Clinical Trial Registration number: NCT01335347.
Gasdermin E suppresses tumour growth by activating anti-tumour immunity
Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis) 1 . Gasdermin E (GSDME, also known as DFNA5)—mutated in familial ageing-related hearing loss 2 —can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells 3 – 5 . GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer 2 , 6 , suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme -repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8 + T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity. The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.
Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling
Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8 + T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8 + T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B -deficient CD8 + T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8 + T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8 + T lymphocytes in the setting of acute myocardial infarction. Immune cells contribute to adverse remodeling following myocardial infarction. Here the authors show in mice and pigs that CD8 + lymphocytes release Granzyme B in the infarcted heart leading to cardiomyocyte death, enhanced inflammation and deterioration of cardiac function.
Spatial predictors of immunotherapy response in triple-negative breast cancer
Immune checkpoint blockade (ICB) benefits some patients with triple-negative breast cancer, but what distinguishes responders from non-responders is unclear 1 . Because ICB targets cell–cell interactions 2 , we investigated the impact of multicellular spatial organization on response, and explored how ICB remodels the tumour microenvironment. We show that cell phenotype, activation state and spatial location are intimately linked, influence ICB effect and differ in sensitive versus resistant tumours early on-treatment. We used imaging mass cytometry 3 to profile the in situ expression of 43 proteins in tumours from patients in a randomized trial of neoadjuvant ICB, sampled at three timepoints (baseline, n  = 243; early on-treatment, n  = 207; post-treatment, n  = 210). Multivariate modelling showed that the fractions of proliferating CD8 + TCF1 + T cells and MHCII + cancer cells were dominant predictors of response, followed by cancer–immune interactions with B cells and granzyme B + T cells. On-treatment, responsive tumours contained abundant granzyme B + T cells, whereas resistant tumours were characterized by CD15 + cancer cells. Response was best predicted by combining tissue features before and on-treatment, pointing to a role for early biopsies in guiding adaptive therapy. Our findings show that multicellular spatial organization is a major determinant of ICB effect and suggest that its systematic enumeration in situ could help realize precision immuno-oncology. Imaging mass cytometry is used to map the multicellular dynamics of immune checkpoint blockade-treated triple-negative breast cancer, finding that key proliferative fractions and cell–cell interactions drive response, and immunotherapy distinctively remodels tumour structure.
Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells
Gasdermin (GSDM)-mediated pyroptosis is functionally involved in multiple diseases, but Gasdermin-B (GSDMB) exhibit cell death-dependent and independent activities in several pathologies including cancer. When the GSDMB pore-forming N-terminal domain is released by Granzyme-A cleavage, it provokes cancer cell death, but uncleaved GSDMB promotes multiple pro-tumoral effects (invasion, metastasis, and drug resistance). To uncover the mechanisms of GSDMB pyroptosis, here we determined the GSDMB regions essential for cell death and described for the first time a differential role of the four translated GSDMB isoforms (GSDMB1-4, that differ in the alternative usage of exons 6-7) in this process. Accordingly, we here prove that exon 6 translation is essential for GSDMB mediated pyroptosis, and therefore, GSDMB isoforms lacking this exon (GSDMB1-2) cannot provoke cancer cell death. Consistently, in breast carcinomas the expression of GSDMB2, and not exon 6-containing variants (GSDMB3-4), associates with unfavourable clinical-pathological parameters. Mechanistically, we show that GSDMB N-terminal constructs containing exon-6 provoke cell membrane lysis and a concomitant mitochondrial damage. Moreover, we have identified specific residues within exon 6 and other regions of the N-terminal domain that are important for GSDMB-triggered cell death as well as for mitochondrial impairment. Additionally, we demonstrated that GSDMB cleavage by specific proteases (Granzyme-A, Neutrophil Elastase and caspases) have different effects on pyroptosis regulation. Thus, immunocyte-derived Granzyme-A can cleave all GSDMB isoforms, but in only those containing exon 6, this processing results in pyroptosis induction. By contrast, the cleavage of GSDMB isoforms by Neutrophil Elastase or caspases produces short N-terminal fragments with no cytotoxic activity, thus suggesting that these proteases act as inhibitory mechanisms of pyroptosis. Summarizing, our results have important implications for understanding the complex roles of GSDMB isoforms in cancer or other pathologies and for the future design of GSDMB-targeted therapies.
Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells
Effective adoptive T cell therapy (ACT) comprises the killing of cancer cells through the therapeutic use of transferred T cells. One of the main ACT approaches is chimeric antigen receptor (CAR) T cell therapy. CAR T cells mediate MHC-unrestricted tumor cell killing by enabling T cells to bind target cell surface antigens through a single-chain variable fragment (scFv) recognition domain. Upon engagement, CAR T cells form a non-classical immune synapse (IS), required for their effector function. These cells then mediate their anti-tumoral effects through the perforin and granzyme axis, the Fas and Fas ligand axis, as well as the release of cytokines to sensitize the tumor stroma. Their persistence in the host and functional outputs are tightly dependent on the receptor’s individual components—scFv, spacer domain, and costimulatory domains—and how said component functions converge to augment CAR T cell performance. In this review, we bring forth the successes and limitations of CAR T cell therapy. We delve further into the current understanding of how CAR T cells are designed to function, survive, and ultimately mediate their anti-tumoral effects.