Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,702
result(s) for
"Groundwater Simulation methods."
Sort by:
Groundwater modelling in arid and semi-arid areas
\"Arid and semi-arid regions face major challenges in the management of scarce freshwater resources under pressures of population, economic development, climate change, pollution and over-abstraction. Groundwater is commonly the most important water resource in these areas. Groundwater models are widely used globally to understand groundwater systems and to guide decisions on management. However, the hydrology of arid and semi-arid areas is very different from that of humid regions, and there is little guidance on the special challenges of groundwater modelling for these areas. This book brings together the experience of internationally-leading experts to fill a gap in the scientific and technical literature. It introduces state-of-the-art methods for modelling groundwater resources, illustrated with a wide-ranging set of illustrative examples from around the world. The book is valuable for researchers, practitioners in developed and developing countries, and graduate students in hydrology, hydrogeology, water resources management, environmental engineering and geography\"-- Provided by publisher.
Geochemical Modeling of Groundwater, Vadose and Geothermal Systems
by
Bundschuh, Jochen
,
Zilberbrand, Michael
in
Geochemical modeling
,
Geothermal resources
,
Geothermal resources -- Simulation methods
2012,2011
Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, hydrocarbon geology, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through its discussion of geochemical modeling, which simulates the chemical and physical processes affecting the distribution of chemical species in liquid, gas, and solid phases. Geochemical modeling applies to a diversity of subsurface environments, from the vadose zone close to the Earth's surface, down to deep-seated geothermal reservoirs.The book is addressed to students, teachers, other professionals, and to the institutions involved in water, geothermal and hydrocarbon resources, mining, and environmental management. The book should prove useful to undergraduate and graduate students, postgraduates, professional geologists and geophysicists, engineers, environmental scientists, soil scientists, hydrochemists, and others interested in water and geochemistry.
PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model
by
Inge E M de Graaf
,
Schmitz, Oliver
,
Wanders, Niko
in
Components
,
Computer simulation
,
Dynamics
2018
We present PCR-GLOBWB 2, a global hydrology and water resources model. Compared to previous versions of PCR-GLOBWB, this version fully integrates water use. Sector-specific water demand, groundwater and surface water withdrawal, water consumption, and return flows are dynamically calculated at every time step and interact directly with the simulated hydrology. PCR-GLOBWB 2 has been fully rewritten in Python and PCRaster Python and has a modular structure, allowing easier replacement, maintenance, and development of model components. PCR-GLOBWB 2 has been implemented at 5 arcmin resolution, but a version parameterized at 30 arcmin resolution is also available. Both versions are available as open-source codes on https://github.com/UU-Hydro/PCR-GLOBWB_model (Sutanudjaja et al., 2017a). PCR-GLOBWB 2 has its own routines for groundwater dynamics and surface water routing. These relatively simple routines can alternatively be replaced by dynamically coupling PCR-GLOBWB 2 to a global two-layer groundwater model and 1-D–2-D hydrodynamic models. Here, we describe the main components of the model, compare results of the 30 and 5 arcmin versions, and evaluate their model performance using Global Runoff Data Centre discharge data. Results show that model performance of the 5 arcmin version is notably better than that of the 30 arcmin version. Furthermore, we compare simulated time series of total water storage (TWS) of the 5 arcmin model with those observed with GRACE, showing similar negative trends in areas of prevalent groundwater depletion. Also, we find that simulated total water withdrawal matches reasonably well with reported water withdrawal from AQUASTAT, while water withdrawal by source and sector provide mixed results.
Journal Article
Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria
2023
Awka and Nnewi metropolises are known for intensive socioeconomic activities that could predispose the available groundwater to pollution. In this paper, an integrated investigation of the drinking water quality and associated human health risks of contaminated groundwater was carried out using geochemical models, numerical water quality models, and the HHRISK code. Physicochemical analysis revealed that the groundwater pH is acidic. Predicted results from PHREEQC model showed that most of the major chemical and trace elements occurred as free mobile ions while a few were bounded to their various hydrated, oxides and carbonate phases. This may have limited their concentration in the groundwater; implying that apart from anthropogenic influx, the metals and their species also occur in the groundwater as a result of geogenic processes. The PHREEQC-based insights were also supported by joint multivariate statistical analyses. Groundwater quality index, pollution index of groundwater, heavy metal toxicity load, and heavy metal evaluation index revealed that 60–70% of the groundwater samples within the two metropolises are unsuitable for drinking as a result of anthropogenic influx, with Pb and Cd identified as the priority elements influencing the water quality. The HHRISK code evaluated the ingestion and dermal exposure pathway of the consumption of contaminated water for children and adult. Results revealed that groundwater from both areas poses a very high chronic and carcinogenic risk from ingestion than dermal contact with the children population showing greater vulnerability. Aggregated and cumulative HHRISK coefficients identified Cd, Pb, and Cu, to have the highest health impact on the groundwater quality of both areas; with residents around Awka appearing to be at greater risks. There is, therefore, an urgent need for the adoption of a state-of-the-art waste management and water treatment strategies to ensure safe drinking water for the public.
Journal Article
Simulation of Drying‐Rewetting Processes in Numerical Groundwater Models Using a New Picard Iteration‐Based Method
2024
When simulating groundwater flow in unconfined and convertible aquifers using a groundwater model with the block‐centered finite‐difference approach, such as MODFLOW, it frequently encounters drying and rewetting of cells. Although many drying and rewetting simulation methods have been proposed in the past, balancing simulation accuracy and convergence capability all at once is difficult. MODFLOW‐2005, which has second‐order accuracy, employs a trial‐and‐error method, but it suffers from computational instability when large quantities of grid cells are dried. MODFLOW‐NWT adopts the upstream‐weighting approach and Newton iteration method to ensure the stability of the drying and rewetting simulations. However, the upstream‐weighting approach has only first‐order accuracy, and the Newton iteration method is complex to implement because it necessitates the establishment of an additional Jacobian matrix. The methods employed by MODFLOW‐NWT are also available in MODFLOW 6, therefore it inherits both the strengths and weaknesses of MODFLOW‐NWT. In this study, a new method, Picard iteration‐based always active cell (PAAC), is proposed. Similar to MODFLOW‐NWT, the PAAC method also uses dry cells as active cells. The PAAC method, however, does not use the upstream‐weighting approach and has second‐order accuracy. Moreover, it ensures good convergence stability even under the Picard iteration method. In addition to discussing the algorithm, five cases were used to comprehensively compare the simulation effects of the PAAC method with MODFLOW‐2005 and MODFLOW‐NWT, including an analytical solution, repeated drying‐rewetting of multi‐layer grids, pumping well problem, perched aquifer problem and a nearly dry single‐layer grid, which verified the practicability of the PACC method. Key Points A new physically‐based method to simulating the drying‐rewetting problems of groundwater model, Picard iteration‐based always active cell The new method performed robust convergence even with the Picard iteration method and a general PCG solver The new method achieved second‐order accuracy
Journal Article
Controls on flood managed aquifer recharge through a heterogeneous vadose zone: hydrologic modeling at a site characterized with surface geophysics
2023
In water-stressed regions of the world, managed aquifer recharge (MAR), the process of intentionally recharging depleted aquifers, is an essential tool for combating groundwater depletion. Many groundwater-dependent regions, including the Central Valley in California, USA, are underlain by thick unsaturated zones (ca. 10 to 40 m thick), nested within complex valley-fill deposits that can hinder or facilitate recharge. Within the saturated zone, interconnected deposits of coarse-grained material (sands and gravel) can act as preferential recharge pathways, while fine-textured facies (silts and clays) accommodate the majority of the long-term increase in aquifer storage. However, this relationship is more complex within the vadose zone. Coarse facies can act as capillary barriers that restrict flow, and contrasts in matric potential can draw water from coarse-grained flow paths into fine-grained, low-permeability zones. To determine the impact of unsaturated-zone stratigraphic heterogeneity on MAR effectiveness, we simulate recharge at a Central Valley almond orchard surveyed with a towed transient electromagnetic system. First, we identified three outcomes of interest for MAR sites: infiltration rate at the surface, residence time of water in the root zone and saturated-zone recharge efficiency, which is defined as the increase in saturated-zone storage induced by MAR. Next, we developed a geostatistical approach for parameterizing a 3D variably saturated groundwater flow model using geophysical data. We use the resulting workflow to evaluate the three outcomes of interest and perform Monte Carlo simulations to quantify their uncertainty as a function of model input parameters and spatial uncertainty. Model results show that coarse-grained facies accommodate rapid infiltration rates and that contiguous blocks of fine-grained sediments within the root zone are >20 % likely to remain saturated longer than almond trees can tolerate. Simulations also reveal that capillary-driven flow draws recharge water into unsaturated, fine-grained sediments, limiting saturated-zone recharge efficiency. Two years after inundation, fine-grained facies within the vadose zone retain an average of 37 % of recharge water across all simulations, where it is inaccessible to either plants or pumping wells. Global sensitivity analyses demonstrate that each outcome of interest is most sensitive to parameters that describe the fine facies, implying that future work to reduce MAR uncertainty should focus on characterizing fine-grained sediments.
Journal Article
Estimation of Small Failure Probability in High‐Dimensional Groundwater Contaminant Transport Modeling Using Subset Simulation Coupled With Preconditioned Crank‐Nicolson MCMC
2024
The accurate prediction of groundwater contamination is challenging due to uncertainties arising from the inherent heterogeneity of aquifers, inadequate site characterization, and limitations in conceptual mathematical models. These factors can result in an underestimation of contaminant concentrations. For effective contaminant prevention and control, it is important to estimate the probability of exceeding the allowed threshold for contaminant concentrations, known as the failure probability of groundwater contamination. Computing small failure probabilities using classical Monte Carlo simulation (MCS) requires computing a large number of samplers to converge to a stationary target value, which is time‐consuming. To address this, in this paper, we develop a novel approach for calculating small failure probabilities, known as subset simulation (SS) coupled with preconditioned Crank‐Nicolson Markov chain Monte Carlo (pCN‐SS), which combines subset simulation with preconditioned Crank‐Nicolson Markov chain Monte Carlo (pCN‐MCMC) to promote computational efficiency. We have tested the performance of the proposed algorithm in both a mathematical example and a numerical case study of groundwater contamination. The results demonstrate that pCN‐SS provides improved accuracy and efficiency for evaluating small failure probabilities for high‐dimensional groundwater contamination, specifically for hydraulic conductivity as a source of uncertainty. Compared to classical MCS and traditional SS, pCN‐SS requires fewer model evaluations but produces stable and accurate results. Key Points The pCN‐SS is proposed to accurately estimate the small failure probability in high‐dimensional groundwater contaminant transport problems The results demonstrate that the pCN‐SS can offer both accuracy and efficiency in estimating small failure probabilities The pCN‐SS surpasses traditional subset simulation in accurately estimating small failure probabilities
Journal Article
Assessment of the geochemical evolution of groundwater quality near the El Kharga Oasis, Egypt using NETPATH and water quality indices
by
Ezzeldin Hesham
,
El Osta Maged
,
Milad, Masoud
in
Aquifers
,
Chemical composition
,
Chemical reactions
2020
The Nubian Sandstone Aquifer (NSA) has been the main source of water in the western desert of Egypt since 1985. This aquifer is subject to excessive groundwater withdrawal in the region, causing declines in potentiometric heads and a deterioration of groundwater quality. Consequently, investigations were undertaken to provide baseline water quality information for groundwater management. Water quality data from wells in the study area were manipulated using a Geographic Information System (GIS), statistical analyses (SPSS), graphical simulations (such as Piper and Gibbs diagrams), water quality index (WQI) and a simple geochemical model (NETPATH). This assessment and the use of hydrochemical indices indicated that chemical reactions between the aquifer matrix and groundwater are likely to be the main factors controlling the chemical composition of groundwater in the area. Also, the results of WQI showed that the majority of the collected water points (about 89%) were unsuitable for potable use due to elevated iron concentrations. The NETPATH modeling results suggest that dedolomitization, silicate weathering and dissolution of halite processes are the main geochemical processes that influence changes in the chemical composition along groundwater flow-paths.
Journal Article