Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Group VI Phospholipases A2 - genetics"
Sort by:
PLA2G6 guards placental trophoblasts against ferroptotic injury
The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specificmanner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.
iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4
Here, we identify iPLA2β as a critical regulator for p53-driven ferroptosis upon reactive oxygen species (ROS)-induced stress. The calcium-independent phospholipase iPLA2β is known to cleave acyl tails from the glycerol backbone of lipids and release oxidized fatty acids from phospholipids. We found that iPLA2β-mediated detoxification of peroxidized lipids is sufficient to suppress p53-driven ferroptosis upon ROS-induced stress, even in GPX4-null cells. Moreover, iPLA2β is overexpressed in human cancers; inhibition of endogenous iPLA2β sensitizes tumor cells to p53-driven ferroptosis and promotes p53-dependent tumor suppression in xenograft mouse models. These results demonstrate that iPLA2β acts as a major ferroptosis repressor in a GPX4-independent manner. Notably, unlike GPX4, loss of iPLA2β has no obvious effect on normal development or cell viability in normal tissues but iPLA2β plays an essential role in regulating ferroptosis upon ROS-induced stress. Thus, our study suggests that iPLA2β is a promising therapeutic target for activating ferroptosis-mediated tumor suppression without serious toxicity concerns. p53 is able to induce ferroptosis in response to reactive oxygen species (ROS)-induced stress and suppresses tumour growth. Here, the authors show that iPLA2β suppresses p53-medated ferroptosis by cleaving and detoxifying peroxidized lipids and that this is independent of canonical ferroptosis regulator GPX4.
Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling
Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways
The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP , PLA2G6 , and IRF4 , and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1 , PPARGC1B , HDAC4 , FAM208B, DOCK8 , and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level. Overall, we conclude that most nevus genes affect melanoma risk ( KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis. Melanocytic nevus count is associated with melanoma risk. In this study, a meta-analysis of 11 nevus GWAS studies identifies novel SNPs in KITLG and 9q32, and bivariate analysis with melanoma GWAS meta-analysis reveals that most nevus genes affect melanoma risk, while melanoma risk loci do not alter the nevus count.
Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease
The etiology of idiopathic Parkinson's disease (idPD) remains enigmatic despite recent successes in identification of genes (PARKs) that underlie familial PD. To find new keys to this incurable neurodegenerative disorder we focused on the poorly understood PARK14 disease locus (Pla2g6 gene) and the store-operated Ca(2+) signalling pathway. Analysis of the cells from idPD patients reveals a significant deficiency in store-operated PLA2g6-dependent Ca(2+) signalling, which we can mimic in a novel B6.Cg-Pla2g6(ΔEx2-VB) (PLA2g6 ex2(KO)) mouse model. Here we demonstrate that genetic or molecular impairment of PLA2g6-dependent Ca(2+) signalling is a trigger for autophagic dysfunction, progressive loss of dopaminergic (DA) neurons in substantia nigra pars compacta and age-dependent L-DOPA-sensitive motor dysfunction. Discovery of this previously unknown sequence of pathological events, its association with idPD and our ability to mimic this pathology in a novel genetic mouse model opens new opportunities for finding a cure for this devastating neurodegenerative disease.
iPLA2β loss leads to age-related cognitive decline and neuroinflammation by disrupting neuronal mitophagy
Background During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2β are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2β deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2β contributes to age-related cognitive decline by disrupting neuronal mitophagy. Methodology We used aged wild-type (WT) mice and iPLA2β −/− mice as natural aging models to assess cognitive performance, iPLA2β expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2β, we employed adeno-associated virus (AAV)-mediated iPLA2β overexpression in aged mice and re-evaluated these parameters. Results Our findings revealed a significant reduction in iPLA2β levels in the prefrontal cortex of aged brains. Notably, iPLA2β-deficient mice exhibited impaired learning and memory. Loss of iPLA2β in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2β alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. Conclusions Our study suggests that age-related iPLA2β loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2β to ameliorate age-related neurocognitive disorders.
Genetic deletion of calcium-independent phospholipase A2γ protects mice from diabetic nephropathy
Calcium-independent phospholipase A 2 γ (iPLA 2 γ) is localized in glomerular epithelial cells (GECs)/podocytes at the mitochondria and endoplasmic reticulum, and can mediate release of arachidonic acid and prostanoids. Global knockout (KO) of iPLA 2 γ in mice did not cause albuminuria, but resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes. In acute glomerulonephritis, deletion of iPLA 2 γ exacerbated albuminuria and podocyte injury. This study addresses the role of iPLA 2 γ in diabetic nephropathy. Hyperglycemia was induced in male mice with streptozotocin (STZ). STZ induced progressive albuminuria in control mice (over 21 weeks), while albuminuria did not increase in iPLA 2 γ KO mice, remaining comparable to untreated groups. Despite similar exposure to STZ, the STZ-treated iPLA 2 γ KO mice developed a lower level of hyperglycemia compared to STZ-treated control. However, there was no significant correlation between the degree of hyperglycemia and albuminuria, and even iPLA 2 γ KO mice with greatest hyperglycemia did not develop significant albuminuria. Mortality at 21 weeks was greatest in diabetic control mice. Sclerotic glomeruli and enlarged glomerular capillary loops were increased significantly in diabetic control compared to diabetic iPLA 2 γ KO mice. Glomerular matrix was expanded in diabetic mice, with control exceeding iPLA 2 γ KO. Glomerular autophagy (increased LC3-II and decreased p62) was enhanced in diabetic iPLA 2 γ KO mice compared to control. Treatment of cultured GECs with H 2 O 2 resulted in increased cell death in control GECs compared to iPLA 2 γ KO, and the increase was slightly greater in medium with high glucose compared to low glucose. H 2 O 2 -induced cell death was not affected by inhibition of prostanoid production with indomethacin. In conclusion, mice with global deletion of iPLA 2 γ are protected from developing chronic glomerular injury in diabetic nephropathy. This is associated with increased glomerular autophagy.
Somatic mutations in arachidonic acid metabolism pathway genes enhance oral cancer post-treatment disease-free survival
The arachidonic acid metabolism (AAM) pathway promotes tumour progression. Chemical inhibitors of AAM pathway prolong post-treatment survival of cancer patients. Here we test whether non-synonymous somatic mutations in genes of this pathway, acting as natural inhibitors, increase post-treatment survival. We identify loss-of-function somatic mutations in 15 (18%) of 84 treatment-naïve oral cancer patients by whole-exome sequencing, which we map to genes of AAM pathway. Patients ( n =53) who survived ≥12 months after surgery without recurrence have significantly ( P =0.007) higher proportion (26% versus 3%) of mutations than those who did not ( n =31). Patients with mutations have a significantly ( P =0.003) longer median disease-free survival (24 months) than those without (13 months). Compared with the presence of a mutation, absence of any mutation increases the hazard ratio for death (11.3) significantly ( P =0.018). The inferences are strengthened when we pool our data with The Cancer Genome Atlas (TCGA) data. In patients with AAM pathway mutations, some downstream pathways, such as the PI3K–Akt pathway, are downregulated. Chemical inhibitors of the tumour-progression promoting arachidonic acid metabolism pathway prolong post-treatment survival of cancer patients. Here the authors analyse sequence variation in oral cancer patients and show that loss-of-function mutations in this pathway prolong survival.
Catalytic Function of PLA2G6 Is Impaired by Mutations Associated with Infantile Neuroaxonal Dystrophy but Not Dystonia-Parkinsonism
Mutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very similar, involving widespread neurodegeneration that begins within the first 1-2 years of life. In contrast, patients with dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6 gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A(2), which has previously been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids. We produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6 enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates. These results indicate that different alterations in PLA2G6 function produce the different disease phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6.
Clinical and genetic characteristics of PLA2G6-related parkinsonism in Southwest China and a comprehensive literature review
BackgroundBiallelic PLA2G6 mutations are associated with early onset autosomal recessive parkinsonism, exhibiting a broad spectrum of clinical heterogeneity.ObjectiveTo comprehensively characterise the clinical, imaging and genetic features of PLA2G6-related parkinsonism.MethodsWe report 14 new cases of PLA2G6-related parkinsonism in Southwest China and conduct a systematic literature review.ResultsAmong the 14 patients in our cohort, 16 PLA2G6 variants were identified, including seven novel and nine previously reported variants. The mean age at symptom onset was 26.50±6.57 years. The most common initial presentation was parkinsonism (9/14, 64.3%), followed by gait disturbance (6/14, 42.9%) and psychiatric symptoms (1/14, 7.1%). A literature review identified 118 patients with PLA2G6-related parkinsonism, with a mean age at onset of 24.53±8.84 years. The most common initial clinical features included parkinsonism (61/117, 52.1%), cerebellar signs (46/85, 54.1%), cognitive impairment (65/92, 70.7%) and psychiatric symptoms (80/93, 86.0%). Subgroup analysis showed that the mean age at symptom onset was older in Chinese patients (26.65±7.08 years) compared with those of European ancestry (20.83±9.79 years) (p=0.016). Additionally, patients of European ancestry showed delayed parkinsonism 5.35±8.14 years after onset. Iron deposition was reported more frequently in patients of European ancestry (10/16, 62.5%) than that in Chinese patients (6/37, 16.2%) (p=0.0002).ConclusionOur study provides new insights on the diverse clinical spectrum of PLA2G6-related parkinsonism, encompassing parkinsonian features, psychiatric symptoms, cognitive impairment and early levodopa-induced motor complications.