Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"HEXXH motif"
Sort by:
The Murine Goblet Cell Protein mCLCA3 Is a Zinc-Dependent Metalloprotease with Autoproteolytic Activity
by
Kaup, Matthias, Charite Berlin, Germany
,
Mundhenk, Lars, Freie University Berlin, Germany
,
Gruber, Achim D., Freie University Berlin, Germany
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2011
Several members of the CLCA family of proteins, originally named chloride channels, calcium-activated, have been shown to modulate chloride conductance in various cell types via an unknown mechanism. Moreover, the human (h) hCLCA1 is thought to modulate the severity of disease in asthma and cystic fibrosis (CF) patients. All CLCA proteins are post-translationally cleaved into two subunits, and recently, a conserved HEXXH zinc-binding amino acid motif has been identified, suggesting a role for CLCA proteins as metalloproteases. Here, we have characterized the cleavage and autoproteolytic activity of the murine model protein mCLCA3, which represents the murine orthologue of human hCLCA1. Using crude membrane fractions from transfected HEK293 cells, we demonstrate that mCLCA3 cleavage is zinc-dependent and exclusively inhibited by cation-chelating metalloprotease inhibitors. Cellular transport and secretion were not affected in response to a cleavage defect that was introduced by the insertion of an E157Q mutation within the HEXXH motif of mCLCA3. Interspecies conservation of these key results was further confirmed with the porcine (p) orthologue of hCLCA1 and mCLCA3, pCLCA1. Importantly, the mCLCA3E157Q mutant was cleaved after co-transfection with the wild-type mCLCA3 in HEK293 cells, suggesting that an intermolecular autoproteolytic event takes place. Edman degradation and MALDI-TOF-MS of the protein fragments identified a single cleavage site in mCLCA3 between amino acids 695 and 696. The data strongly suggest that secreted CLCA proteins have zinc-dependent autoproteolytic activity and that they may cleave additional proteins.
Journal Article
Identification of a novel calcium (Ca2+)-activated chloride channel accessory gene in Xenopus laevis
2016
Calcium (Ca
2+
)-activated chloride channel accessories (CLCAs) are putative anion channel-related proteins with diverse physiological functions. Exploring CLCA diversity is important for prediction of gene structure and function. In an effort to identify novel CLCA genes in
Xenopus laevis
, we successfully cloned and characterized a
Xenopus laevis
cDNA predicted to encode the xCLCA3 gene. Cloning of xCLCA3 was achieved by computational analysis, rapid amplification of cDNA ends (RACE), and a tissue distribution analysis by semi-quantitative reverse transcription (RT) PCR or real-time PCR. We obtained a 2958 bp xCLCA3 cDNA sequence with an open reading frame encoding 943 amino acids. According to the primary structure analysis, xCLCA3 contains a predicted signal sequence, multiple sites of N-linked (N-) glycosylation, N-myristoylation, PKA, PKC, and casein kinase II phosphorylation sites, five putative hydrophobic segments, and the HExxH metalloprotease motif. Additionally, the transmembrane prediction server yielded a preserved N-terminal CLCA domain and a von Willebrand factor type A domain with one transmembrane domain in the C-terminal region. Expression analysis showed that xCLCA3 is expressed in a number of tissues, with strong expression in the brain, colon, small intestine, lung, kidney, and spleen, and poor expression in the heart and liver. These results suggest that xCLCA3 may be a candidate CLCA family member as well as a metalloprotease, rather than just an ion channel accessory protein.
Journal Article
Klebsiella pneumoniae yggG Gene Product: A Zinc-Dependent Metalloprotease
by
Wong, Mun Teng
,
Chang, Ching Ching
,
Yee, Yoke Hiang
in
Amino Acid Sequence
,
Amino acids
,
Bacterial Proteins - chemistry
2011
Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.
Journal Article
Impaired Autoproteolytic Cleavage of mCLCA6, a Murine Integral Membrane Protein Expressed in Enterocytes, Leads to Cleavage at the Plasma Membrane Instead of the Endoplasmic Reticulum
by
Beck, Carol L., Thomas Jefferson University, Philadelphia, Pennsylvania, USA
,
Gruber, Achim D., Freie Universitaet Berlin, Berlin, Germany
,
Kaup, Matthias, Department of Laboratory Medicine and Pathobiochemistry, Berlin, Germany
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2012
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after post-translational cleavage, two subgroups of CLCA proteins can be distinguished. In one subgroup, both subunits are secreted, in the other group, the carboxy-terminal subunit possesses a transmembrane segment, resulting in shedding of only the amino-terminal subunit. Recent data on the post-translational cleavage and proteolytic activity of CLCA are limited to secreted CLCA. In this study, we characterized the cleavage of mCLCA6, a murine CLCA possessing a transmembrane segment. As for secreted CLCA, the cleavage in the endoplasmic reticulum was not observed for a protein with the E157Q mutation in the HEXXH motif of mCLCA6, suggesting that this mutant protein and secreted CLCA family members share a similar autoproteolytic cleavage mechanism. In contrast to secreted CLCA proteins with the E157Q mutation, the uncleaved precursor of the mCLCA6E157Q mutant reached the plasma membrane, where it was cleaved and the amino-terminal subunit was shed into the supernatant. Using crude membrane fractions, we showed that cleavage of the mCLCA6E157Q protein is zinc-dependent and sensitive to metalloprotease inhibitors, suggesting secondary cleavage by a metalloprotease. Interestingly, anchorage of mCLCA6E157Q to the plasma membrane is not essential for its secondary cleavage, because the mCLCA6∨ΔTM E157Q mutant still underwent cleavage. Our data suggest that the processing of CLCA proteins is more complex than previously recognized.
Journal Article
rbCLCA1 is a putative metalloprotease family member: localization and catalytic domain identification
2016
Here, we identify the rat brain (rb) CLCA1 metalloprotease motif and its role in rbCLCA1 processing. GFP tagging or c-myc tagging adjacent to the rbCLCA1 signal sequence was used to detect rbCLCA1 expression and localization patterns if they matched those of other CLCA family members. Immunoblot analysis revealed that massive deletion of the metalloprotease motif affects the protein cleavage process by restricting two cleavage products to only one product. rbCLCA1 as well as the mutant proteins H155A, E156Q, H159A, D166A, E167A, E170A, and D171A overexpressed in HEK293T cells showed plasma membrane localization; and intracellular localizations of H159A and E167A were observed in permeabilized and non-permeabilized conditions. C-terminally GFP-tagged rbCLCA1 showed either ER localization or overall signal within the cells rather than on the cell surface. Cell surface biotinylation analysis was used to show that rbCLCA1, H155A, E156Q, D166A, E170A, and D171A reach the cell surface while little H159A and E167A reach the cell surface. Taken together, our findings indicate that the amino acids H159 and E167 in the rbCLCA1 metalloprotease motif are important in rbCLCA1 processing for localization to the cell surface. Our data demonstrate that rbCLCA1 localization is dependent on the H159 and E167, suggesting either the metalloprotease motif including H159 and E167 may be the key site for rbCLCA1 cellular processing or that a novel rbCLCA1 regulation mechanism exists with a metalloprotease activity.
Journal Article
A Family of Membrane-Embedded Metalloproteases Involved in Regulated Proteolysis of Membrane-Associated Transcription Factors
by
Losick, Richard
,
Fawcett, Paul
,
Rudner, David Z.
in
Amino Acid Motifs
,
Amino Acid Sequence
,
Amino acid substitution
1999
We present evidence that the sporulation protein SpoIVFB of Bacillus subtilis is a member of a newly recognized family of metalloproteases that have catalytic centers adjacent to or within the membrane. SpoIVFB is required for converting the membrane-associated precursor protein, pro-σK, to the mature and active transcription factor σKby proteolytic removal of an N-terminal extension of 20 amino acids. SpoIVFB and other family members share the conserved sequence HEXXH, a hallmark of metalloproteases, as well as a second conserved motif NPDG, which is unique to the family. Both motifs, which are expected to form the catalytic center of the protease, overlap hydrophobic segments that are predicted to be separate transmembrane domains. The only other characterized member of this family of membrane-embedded metalloproteases is the mammalian Site-2 protease (S2P), which is required for the intramembrane cleavage of the eukaryotic transcription factor sterol regulatory element binding protein (SREBP). We report that amino acid substitutions in the two conserved motifs of SpoIVFB impair pro-σKprocessing and σK- directed gene expression during sporulation. These results and those from a similar analysis of S2P support the interpretation that both proteins are founding members of a family of metalloproteases involved in the activation of membrane-associated transcription factors. Thus, the pathways that govern the activation of the prokaryotic transcription factor pro-σKand the mammalian transcription factor SREBP not only are analogous but also use processing enzymes with strikingly homologous features.
Journal Article