Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,595 result(s) for "HIV latency"
Sort by:
Single-cell RNA sequencing reveals common and unique gene expression profiles in primary CD4+ T cells latently infected with HIV under different conditions
The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells . Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.
Selective miRNA Modulation Fails to Activate HIV Replication in In Vitro Latency Models
HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed. We explored the role of microRNAs (miRNAs) in latency maintenance and their modulation as a potential anti-latency strategy. Latency models based on treating resting CD4 T cells with chemokine (C-C motif) ligand 19 (CCL19) or interleukin-7 (IL7) before HIV infection and next-generation sequencing were used to identify the miRNAs involved in HIV latency. We detected four upregulated miRNAs (miRNA-98, miRNA-4516, miRNA-4488, and miRNA-7974). Individual or combined inhibition of these miRNAs was performed by transfection into cells latently infected with HIV. Viral replication, assessed 72 h after transfection, did not increase after miRNA modulation, despite miRNA inhibition and lack of toxicity. Furthermore, the combined modulation of five miRNAs previously associated with HIV latency was not effective in these models. Our results do not support the modulation of miRNAs as a useful strategy for the reversal of HIV latency. As shown with other drugs, the potential of miRNA modulation as an HIV reactivation strategy could be dependent on the latency model used.
Post-treatment control of HIV infection
Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infected cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. Using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for noncontrollers consistent with observations. Significance Recent reports suggest that antiretroviral therapy (ART) initiated early after HIV infection increases the likelihood of post-treatment control (PTC) in which plasma virus remains undetectable after treatment cessation. However, only a small fraction of patients treated early attain PTC. We develop a mathematical model of HIV infection that provides insight into these phenomena, suggesting that treatments restricting or reducing the latent reservoir size may allow immune responses to control infection posttreatment. Our model makes predictions about immune response strengths and latent reservoir sizes needed for a patient taken off treatment to exhibit PTC that may help guide future studies.
HIV expression persists in the cerebrospinal fluid of HIV-associated neurocognitive disorders despite effective ART
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) persist in people with HIV (PWH). The central nervous system (CNS) may act as a viral reservoir due to limited ART penetration and virological discordance between plasma and cerebrospinal fluid (CSF). In a cross-sectional study of 24 ART-treated PWH, participants were stratified as cognitively normal (CN, n = 10) or HAND (n = 14), including asymptomatic neurocognitive impairment (ANI, n = 3), mild neurocognitive disorder (MND, n = 9), and HIV-associated dementia (HAD, n = 2). HIV RNA was quantified in paired plasma and CSF by RT-ddPCR. CSF peptidome profiling was performed using mass spectrometry, and ART concentrations were measured by LC-MS/MS. HIV infectivity in CSF was assessed via viral outgrowth assays. HIV RNA was undetectable in plasma but present in CSF from HAND participants, indicating compartmentalized viral persistence. Tenofovir and lamivudine levels were higher in plasma, whereas dolutegravir trended higher in CSF. Nevertheless, all CSF drug concentrations exceeded their IC50 values in effectively suppressing active HIV replication. Peptidomic analysis identified HIV-derived peptides (e.g., Env and Pol) exclusively in HAND samples, accompanied by an early reduction in β-tau. Although HIV RNA and peptides were detectable, no productive infection was established by CSF in permissive immune cells. Together, despite pharmacologically sufficient ART penetration, HIV persists in the CSF of PWH with HAND. These findings suggest that the latent HIV infection with non-replicative viral expression, rather than residual active HIV replication, may contribute to neuroinflammation and cognitive decline in PWH on suppressive ART.
Screening for gene expression fluctuations reveals latency-promoting agents of HIV
Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or “noise”) that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration–approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.
Immediate antiviral therapy appears to restrict resting CD4⁺ cell HIV-1 infection without accelerating the decay of latent infection
HIV type 1 (HIV-1) persists within resting CD4⁺ T cells despite antiretroviral therapy (ART). To better understand the kinetics by which resting cell infection (RCI) is established, we developed a mathematical model that accurately predicts (r = 0.65, P = 2.5 × 10⁻⁴) the initial frequency of RCI measured about 1 year postinfection, based on the time of ART initiation and the dynamic changes in viremia and CD4⁺ T cells. In the largest cohort of patients treated during acute seronegative HIV infection (AHI) in whom RCI has been stringently quantified, we found that early ART reduced the generation of latently infected cells. Although RCI declined after the first year of ART in most acutely infected patients, there was a striking absence of decline when initial RCI frequency was less than 0.5 per million. Notably, low-level viremia was observed more frequently as RCI increased. Together these observations suggest that (i) the degree of RCI is directly related to the availability of CD4⁺ T cells susceptible to HIV, whether viremia is controlled by the immune response and/or ART; and (ii) that two pools of infected resting CD4⁺ T cells exist, namely, less stable cells, observable in patients in whom viremia is not well controlled in early infection, and extremely stable cells that are established despite early ART. These findings reinforce and extend the concept that new approaches will be needed to eradicate HIV infection, and, in particular, highlight the need to target the extremely small but universal, long-lived latent reservoir.
High concentrations of Maraviroc do not alter immunological and metabolic parameters of CD4 T cells
Maraviroc (MVC) is an antiretroviral drug capable of binding to CCR5 receptors and block HIV entry into target cells. Moreover, MVC can activate NF-kB pathway and induce viral transcription in HIV-infected cells, being proposed as a latency reversal agent (LRA) in HIV cure strategies. However, the evaluation of immunological and metabolic parameters induced by MVC concentrations capable of inducing HIV transcription have not been explored in depth. We cultured isolated CD4 T cells in the absence or presence of MVC, and evaluated the frequency of CD4 T cell subpopulations and activation markers levels by flow cytometry, and the oxidative and glycolytic metabolic rates of CD4 T cells using a Seahorse Analyzer. Our results indicate that a high concentration of MVC did not increase the levels of activation markers, as well as glycolytic or oxidative metabolic rates in CD4 T cells. Furthermore, MVC did not induce significant changes in the frequency and activation levels of memory cell subpopulations. Our data support a safety profile of MVC as a promising LRA candidate since it does not induce alterations of the immunological and metabolic parameters that could affect the functionality of these immune cells.
A functional screen identifies transcriptional networks that regulate HIV-1 and HIV-2
The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein–DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein– DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.
A First-in-Class Dual Degrader of Bcl-2/Bcl-xL Reverses HIV Latency and Minimizes Ex Vivo Reservoirs from Patients
The persistence of latent HIV-1 proviruses in CD4+ T cells is a major obstacle to curing HIV. The “shock and kill” strategy involves reversing latency with latency-reversing agents (LRAs) and selectively inducing cell death in infected cells. However, current LRAs have shown limited efficacy in eliminating the ex vivo HIV reservoir and thus failed in clinical study. In this study, we repurposed PZ703b, a pro-apoptotic protein degrader initially developed for anti-leukemia therapy, to target HIV eradication. PZ703b induced the degradation of Bcl-2 and Bcl-xL, activating the non-canonical NF-kB pathway and caspases cascade, resulting in latency reversal and the selective apoptosis of infected cells. The treatment of ex vivo CD4+ T cells from ART-suppressed HIV-1 patients led to approximately a 50% reduction in the replication-competent reservoir. While this result does not reach the threshold required for a complete cure, it demonstrates the potential of a dual degrader of Bcl-2/Bcl-xL in reversing HIV latency and inducing selective cell death. Our study provides a proof-of-concept for using dual degraders of Bcl-2/Bcl-xL as a novel category of LRAs in therapeutic strategies aimed at reducing HIV reservoirs. This approach may pave the way for the further exploration of targeted interventions to eliminate the HIV-inducible reservoir.