Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,772 result(s) for "HLA-DR Antigens"
Sort by:
Peptide binding predictions for HLA DR, DP and DQ molecules
Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
MHC class II proteins mediate cross-species entry of bat influenza viruses
Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats 1 , 2 . The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan 1 , 3 , 4 , despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR–Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism. The DR isotype of the human leukocyte antigen of the MHC class II—or its homologues in bats, pigs, mice and chickens—is an essential cell entry determinant for bat influenza A viruses.
NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ
Major histocompatibility complex class II (MHCII) molecules play an important role in cell-mediated immunity. They present specific peptides derived from endosomal proteins for recognition by T helper cells. The identification of peptides that bind to MHCII molecules is therefore of great importance for understanding the nature of immune responses and identifying T cell epitopes for the design of new vaccines and immunotherapies. Given the large number of MHC variants, and the costly experimental procedures needed to evaluate individual peptide–MHC interactions, computational predictions have become particularly attractive as first-line methods in epitope discovery. However, only a few so-called pan-specific prediction methods capable of predicting binding to any MHC molecule with known protein sequence are currently available, and all of them are limited to HLA-DR. Here, we present the first pan-specific method capable of predicting peptide binding to any HLA class II molecule with a defined protein sequence. The method employs a strategy common for HLA-DR, HLA-DP and HLA-DQ molecules to define the peptide-binding MHC environment in terms of a pseudo sequence. This strategy allows the inclusion of new molecules even from other species. The method was evaluated in several benchmarks and demonstrates a significant improvement over molecule-specific methods as well as the ability to predict peptide binding of previously uncharacterised MHCII molecules. To the best of our knowledge, the NetMHCIIpan - 3 . 0 method is the first pan-specific predictor covering all HLA class II molecules with known sequences including HLA-DR, HLA-DP, and HLA-DQ. The NetMHCpan - 3 . 0 method is available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.0 .
Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes
Previous studies have attempted to define human leukocyte antigen (HLA) class II supertypes, analogous to the case for class I, on the basis of shared peptide-binding motifs or structure. In the present study, we determined the binding capacity of a large panel of non-redundant peptides for a set of 27 common HLA DR, DQ, and DP molecules. The measured binding data were then used to define class II supertypes on the basis of shared binding repertoires. Seven different supertypes (main DR, DR4, DRB3, main DQ, DQ7, main DP, and DP2) were defined. The molecules associated with the respective supertypes fell largely along lines defined by MHC locus and reflect, in broad terms, commonalities in reported peptide-binding motifs. Repertoire overlaps between molecules within the same class II supertype were found to be similar in magnitude to what has been observed for HLA class I supertypes. Surprisingly, however, the degree to which repertoires between molecules in the different class II supertypes also overlapped was found to be five to tenfold higher than repertoire overlaps noted between molecules in different class I supertypes. These results highlight a high degree of repertoire overlap amongst all HLA class II molecules, perhaps reflecting binding in multiple registers, and more pronounced dependence on backbone interactions rather than peptide anchor residues. This fundamental difference between HLA class I and class II would not have been predicted on the basis of analysis of either binding motifs or the sequence/predicted structures of the HLA molecules.
Granulocyte-Macrophage Colony-stimulating Factor to Reverse Sepsis-associated Immunosuppression: A Double-Blind, Randomized, Placebo-controlled Multicenter Trial
Sustained sepsis-associated immunosuppression is associated with uncontrolled infection, multiple organ dysfunction, and death. In the first controlled biomarker-guided immunostimulatory trial in sepsis, we tested whether granulocyte-macrophage colony-stimulating factor (GM-CSF) reverses monocyte deactivation, a hallmark of sepsis-associated immunosuppression (primary endpoint), and improves the immunological and clinical course of patients with sepsis. In a prospective, randomized, double-blind, placebo-controlled, multicenter trial, 38 patients (19/group) with severe sepsis or septic shock and sepsis-associated immunosuppression (monocytic HLA-DR [mHLA-DR] <8,000 monoclonal antibodies (mAb) per cell for 2 d) were treated with GM-CSF (4 microg/kg/d) or placebo for 8 days. The patients' clinical and immunological course was followed up for 28 days. Both groups showed comparable baseline mHLA-DR levels (5,609 +/- 3,628 vs. 5,659 +/- 3,332 mAb per cell), which significantly increased within 24 hours in the GM-CSF group. After GM-CSF treatment, mHLA-DR was normalized in 19/19 treated patients, whereas this occurred in 3/19 control subjects only (P < 0.001). GM-CSF also restored ex-vivo Toll-like receptor 2/4-induced proinflammatory monocytic cytokine production. In patients receiving GM-CSF, a shorter time of mechanical ventilation (148 +/- 103 vs. 207 +/- 58 h, P = 0.04), an improved Acute Physiology and Chronic Health Evaluation-II score (P = 0.02), and a shorter length of both intrahospital and intensive care unit stay was observed (59 +/- 33 vs. 69 +/- 46 and 41 +/- 26 vs. 52 +/- 39 d, respectively, both not significant). Side effects related to the intervention were not noted. Biomarker-guided GM-CSF therapy in sepsis is safe and effective for restoring monocytic immunocompetence. Use of GM-CSF may shorten the time of mechanical ventilation and hospital/intensive care unit stay. A multicenter trial powered for the improvement of clinical parameters and mortality as primary endpoints seems indicated. Clinical trial registered with www.clinicaltrials.gov (NCT00252915).
The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients
Background Recent randomized trials have not found that polymyxin B hemoperfusion (PMX-HP) improves outcomes for patients with sepsis. However, it remains unclear whether the therapy could provide benefit for highly selected patients. Monocyte human leukocyte antigen (mHLA-DR) expression, a critical step in the immune response, is decreased during sepsis and leads to worsening sepsis outcomes. One recent study found that PMX-HP increased mHLA-DR expression while another found that the treatment removed HLA-DR-positive cells. Methods We conducted a randomized controlled trial in patients with blood endotoxin activity assay (EAA) level ≥ 0.6. Patients in the PMX-HP group received a 2-h PMX-HP treatment plus standard treatment for 2 consecutive days. Patients in the non-PMX-HP group received only standard treatment. The primary outcome compared the groups on median change in mHLA-DR expression between day 3 and baseline. Secondary outcomes compared the groups on the mean or median change in CD11b expression, neutrophil chemotaxis, presepsin, cardiovascular Sequential Organ Failure Assessment (CVS SOFA) score, vasopressor dose, and EAA level between day 3 and baseline. We further compared the groups on mortality, ICU-free days, ventilator-free days, dialysis dependence status, renal recovery, serum creatinine, vasopressor-free days, and major adverse kidney events (MAKE 28), measured on day 28. Results Fifty-nine patients were randomized to PMX-HP ( n  = 29) and non-PMX-HP ( n  = 30) groups. At baseline, mHLA-DR expression, CD11b, neutrophil chemotaxis, and clinical parameters were comparable between groups. The median change in mHLA-DR expression between day 3 and baseline was higher in PMX-HP patients than in patients receiving standard therapy alone ( P  = 0.027). The mean change in CD11b between day 3 and baseline was significantly lower in the PMX-HP group than in the non-PMX-HP group ( P  = 0.002). There were no significant changes from baseline in neutrophil chemotaxis, presepsin, CVS SOFA scores, vasopressor doses, or EAA level between groups. On day 28 after enrollment, mortality, ICU-free days, ventilator-free days, dialysis dependence status, renal recovery, serum creatinine, vasopressor-free days, and MAKE 28 were comparable between groups. Conclusion PMX-HP improved mHLA-DR expression in severe sepsis patients. Future studies should examine the potential benefit of PMX-HP in patients with low mHLA-DR expression. Trial registration ClinicalTrials.gov, NCT02413541 . Registered on 3 March 2015. 
Increase in CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis
Myeloid-derived suppressor cells (MDSCs) are known as key immune regulators in various human malignancies, and it is reported that CD14 + HLA-DR −/low MDSCs are increased in hepatocellular carcinoma (HCC) patients. However, the host factors that regulate the frequency and the effect on the prognosis of HCC patients are still unclear. We investigated these issues and clarified the relationships between a feature of MDSCs and host factors in HCC patients. We examined the frequency of MDSCs in 123 HCC patients, 30 chronic liver disease patients without HCC, and 13 healthy controls by flow cytometric analysis. The relationships between the clinical features and the frequency of MDSCs were analyzed. In 33 patients who received curative radiofrequency ablation (RFA) therapy, we examined the impact of MDSCs on HCC recurrence. The frequency of MDSCs in HCC patients was significantly increased. It was correlated with tumor progression, but not with the degree of liver fibrosis and inflammation. In terms of serum cytokines, the concentrations of IL-10, IL-13, and vascular endothelial growth factor were significantly correlated with the frequency of MDSCs. In HCC patients who received curative RFA therapy, the frequency of MDSCs after treatment showed various changes and was inversely correlated with recurrence-free survival time. The frequency of MDSCs is correlated with tumor progression, and this frequency after RFA is inversely correlated with the prognosis of HCC patients. Patients with a high frequency of MDSCs after RFA should be closely followed and the inhibition of MDSCs may improve the prognosis of patients.
IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4+ T cells
Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4 + T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b + CD11c + cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1 , CTSL , COX2 , and IL6 were higher in tumor-infiltrating CD11b + CD11c + cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b + CD11c + cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4 + T and CD8 + T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.
Single cell profiling of circulating autoreactive CD4 T cells from patients with autoimmune liver diseases suggests tissue imprinting
Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments. Using a mouse model, we demonstrate that, following antigen recognition in the liver, CD4 T cells acquire an exhausted phenotype, play a crucial role in liver damage, and are controlled by immune checkpoint pathways. Our findings thus suggest that circulating autoreactive CD4 T cells in AILD are imprinted by chronic antigen exposure to promote liver inflammation, thereby serving as a potential target for developing biomarkers and therapies for AILD. Dysregulated CD4 T cells have been implicated in autoimmune liver disease, but their phenotypes and origin are still unclear. Here the authors profile circulating, autoreactive CD4 T cells to find transcription signatures similar to tissue-activated, exhausted T cells, thereby hinting a tissue origin for these circulation CD4 T cells.
Individual mHLA-DR trajectories in the ICU as predictors of early infections following liver transplantation: a prospective observational study
Background Infections are a leading cause of early mortality after liver transplantation (LT). Prior to transplantation, cirrhosis-associated immune dysfunction significantly increases the risk of infection. This study investigated the potential of immune monitoring, with a focus on monocytic HLA-DR (mHLA-DR) expression, as a predictor of post-LT complications. Methods We conducted a prospective study on 130 patients awaiting LT at Lyon University Hospital to assess mHLA-DR expression, lymphocyte subsets, and T-cell function before and after LT. Multivariate analysis and K-means longitudinal clustering were performed to explore the relationships between immune trajectories and clinical outcomes. Results Among the 99 patients who underwent LT, 35.4% experienced infections early post-LT. No difference in outcome was found regarding lymphocyte count or function. Delayed mHLA-DR recovery (Day 7 < 11,000 AB/C) and pre-LT MELD scores > 30 emerged as independent infection risk factors, with ORs of 12.1 [4.4–38.2], p  < 0.0001 and 4.9 [1.4–18.4], p  = 0.01, respectively. Patients with delayed mHLA-DR restoration also had reduced one-year survival (77.8% versus 98.3%, p  = 0.003). K-means clustering revealed three distinct mHLA-DR recovery profiles, with the slowest recovery group showing the poorest outcomes. Conclusions Our findings highlight mHLA-DR as an early predictor of post-LT infections. Monitoring post-LT immune function through mHLA-DR expression could guide individualized management strategies to improve outcomes. Trial registration The study was registered in the ClinicalTrials.gov registry: NCT03995537, date: June 20, 2019.