Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
623
result(s) for
"HLA-G"
Sort by:
The double-sided of human leukocyte antigen-G molecules in type 1 autoimmune hepatitis
2022
The immunomodulatory effects of HLA-G expression and its role in cancers, human liver infections and liver transplantation are well documented, but so far, there are only a few reports addressing autoimmune liver diseases, particularly autoimmune hepatitis (AIH).
Journal Article
Expression of classical human leukocyte antigen class I antigens, HLA‐E and HLA‐G, is adversely prognostic in pancreatic cancer patients
2020
The expression of classical human leukocyte antigen class I antigens (HLA‐I) on the surfaces of cancer cells allows cytotoxic T cells to recognize and eliminate these cells. Reduction or loss of HLA‐I is a mechanism of escape from antitumor immunity. The present study aimed to investigate the clinicopathological impacts of HLA‐I and non–classical HLA‐I antigens expressed on pancreatic ductal adenocarcinoma (PDAC) cells. We performed immunohistochemistry to detect expression of HLA‐I antigens in PDAC using 243 PDAC cases and examined their clinicopathological influences. We also investigated the expression of immune‐related genes to characterize PDAC tumor microenvironments. Lower expression of HLA‐I, found in 33% of PDAC cases, was significantly associated with longer overall survival. Higher expression of both HLA‐E and HLA‐G was significantly associated with shorter survival. Multivariate analyses revealed that higher expression of these three HLA‐I antigens was significantly correlated with shorter survival. Higher HLA‐I expression on PDAC cells was significantly correlated with higher expression of IFNG, which also correlated with PD1, PD‐L1 and PD‐L2 expression. In vitro assay revealed that interferon gamma (IFNγ) stimulation increased surface expression of HLA‐I in three PDAC cell lines. It also upregulated surface expression of HLA‐E, HLA‐G and immune checkpoint molecules, including PD‐L1 and PD‐L2. These results suggest that the higher expression of HLA‐I, HLA‐E and HLA‐G on PDAC cells is an unfavorable prognosticator. It is possible that IFNγ promotes a tolerant microenvironment by inducing immune checkpoint molecules in PDAC tissues with higher HLA‐I expression on PDAC cells. human leukocyte antigen class I antigens (HLA‐I) are needed for T cells to recognize target cells. Here, we showed that higher HLA‐I expression on pancreatic cancer cells is associated with poor prognosis, where formation of the tolerant microenvironment may be involved in IFNγ.
Journal Article
A review of the main genetic factors influencing the course of COVID-19 in Sardinia: the role of human leukocyte antigen-G
by
Davide Firinu
,
Luigi Isaia Lecca
,
Stefano Mocci
in
3' Untranslated Regions
,
3' Untranslated Regions - genetics
,
Asymptomatic
2023
A large number of risk and protective factors have been identified during the SARS-CoV-2 pandemic which may influence the outcome of COVID-19. Among these, recent studies have explored the role of HLA-G molecules and their immunomodulatory effects in COVID-19, but there are very few reports exploring the genetic basis of these manifestations. The present study aims to investigate how host genetic factors, including
gene polymorphisms and sHLA-G, can affect SARS-CoV-2 infection.
We compared the immune-genetic and phenotypic characteristics between COVID-19 patients (n = 381) with varying degrees of severity of the disease and 420 healthy controls from Sardinia (Italy).
HLA-G locus analysis showed that the extended haplotype
was more prevalent in both COVID-19 patients and controls. In particular, this extended haplotype was more common among patients with mild symptoms than those with severe symptoms [22.7%
15.7%, OR = 0.634 (95% CI 0.440 - 0.913); P = 0.016]. Furthermore, the most significant
polymorphism (
) shows that the
genotype frequency decreases gradually from 27.6% in paucisymptomatic patients to 15.9% in patients with severe symptoms (X
= 7.095, P = 0.029), reaching the lowest frequency (7.0%) in ICU patients (X
= 11.257, P = 0.004). However, no significant differences were observed for the soluble HLA-G levels in patients and controls. Finally, we showed that SARS-CoV-2 infection in the Sardinian population is also influenced by other genetic factors such as β-thalassemia trait (
C>T in the
gene),
-C C1+ group combination and the
haplotype which exert a protective effect [P = 0.005, P = 0.001 and P = 0.026 respectively]. Conversely, the Neanderthal
gene variant (
A>G) shows a detrimental consequence on the disease course [P = 0.001]. However, by using a logistic regression model,
genotype was independent from the other significant variables [OR
= 0.4 (95% CI 0.2 - 0.7), P
= 6.5 x 10
].
Our results reveal novel genetic variants which could potentially serve as biomarkers for disease prognosis and treatment, highlighting the importance of considering genetic factors in the management of COVID-19 patients.
Journal Article
Systematic Evaluation of HLA-G 3’Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome
by
Kimmig, Rainer
,
Michita, Rafael Tomoya
,
Rohn, Hana
in
3' Untranslated Regions
,
Adolescent
,
Adult
2022
Despite major improvements in diagnostics and therapy in early as well as in locally advanced breast cancer (LABC), metastatic relapse occurs in about 20% of patients, often explained by early micro-metastatic spread into bone marrow by disseminated tumor cells (DTC). Although neoadjuvant chemotherapy (NACT) has been a successful tool to improve overall survival (OS), there is growing evidence that various environmental factors like the non-classical human leukocyte antigen-G (HLA-G) promotes cancer invasiveness and metastatic progression. HLA-G expression is associated with regulatory elements targeting certain single-nucleotide polymorphisms (SNP) in the HLA-G 3’ untranslated region (UTR), which arrange as haplotypes. Here, we systematically evaluated the impact of HLA-G 3’UTR polymorphisms on disease status, on the presence of DTC, on soluble HLA-G levels, and on therapy and disease outcome in non-metastatic LABC patients. Although haplotype frequencies were similar in patients ( n = 142) and controls ( n = 204), univariate analysis revealed that the UTR-7 haplotype was related to patients with low tumor burden, whereas UTR-4 was associated with tumor sizes >T1. Furthermore, UTR-4 was associated with the presence of DTC, but UTR-3 and UTR-7 were related to absence of DTC. Additionally, increased levels of soluble HLA-G molecules were found in patients carrying UTR-7. Regarding therapy and disease outcome, univariate and multivariate analysis highlighted UTR-1 or UTR-2 as a prognostic parameter indicative for a beneficial course of disease in terms of complete response towards NACT or progression-free survival (PFS). At variance, UTR-4 was an independent risk factor for a reduced OS besides already known parameters. Taken into account the most common HLA-G 3’UTR haplotypes (UTR-1–UTR-7, UTR-18), deduction of the UTR-1/2/4 haplotypes to specific SNPs revealed that the +3003C variant, unique for UTR-4, seemed to favor a detrimental disease outcome, while the +3187G and +3196G variants, unique for UTR-1 or UTR-2, were prognostic parameters for a beneficial course of disease. In conclusion, these data suggest that the HLA-G 3’UTR variants +3003C, +3187G, and +3196G are promising candidates for the prediction of therapy and disease outcome in LABC patients.
Journal Article
HLA-G neo-expression modifies genetic programs governing tumor cell lines
2024
The development of immunotherapies has proved to be clinically encouraging to re-establish the immune function modified by the expression of immune inhibitory molecules in tumors. However, there are still patients with poor survival rates following treatment. The elucidation of molecular mechanisms triggered by the neo-expression of particular IC in tumors would constitute a major step toward better understanding tumor evolution and would help to design future clinical protocols. To this end, we investigate the modifications triggered by the neo-expression of the immune checkpoints HLA-G in ccRCC tumor cells. We demonstrate, for the first time, that HLA-G modifies key genes implicated mainly in tumor development, angiogenesis, calcium flow and mitochondria dynamics. The involvement of HLA-G on the expression of genes belonging to these pathways such as ADAM-12, NCAM1 and NRP1 was confirmed by the CRISPR/Cas9-mediated edition of HLA-G. The data reveal multifaceted roles of HLA-G in tumor cells which are far beyond the well-known function of HLA-G in the immune anti-tumor response. This warrants further investigation of HLA-G and these new partners in tumors of different origin so as to propose future new treatments to improve health patient’s outcome.
Journal Article
HLA-G Genotype/Expression/Disease Association Studies: Success, Hurdles, and Perspectives
2020
The non-classical HLA-G is a well-known immune-modulatory molecule. In physiological condition, HLA-G surface expression is restricted to the maternal-fetal interface and to immune-privileged adult tissues, whereas soluble forms of HLA-G are detectable in various body fluids. HLA-G can be
expressed in pathological conditions including tumors, chronic infections, or after allogeneic transplantation. HLA-G exerts positive effects modulating innate and adaptive immune responses and promoting tolerance, or detrimental effects inducing immune escape mechanisms. HLA-G locus, in contrast to classical HLA class I gene, is highly polymorphic in the non-coding 3' untranslated region (UTR) and in the 5' upstream regulatory region (5' URR). Variability in these regions influences HLA-G expression by modifying mRNA stability or allowing posttranscriptional regulation in the case of 3' UTR or by sensing the microenvironment and responding to specific stimuli in the case of HLA-G promoter regions (5' URR). The influence of genetic variations on the expression of HLA-G makes it an attractive biomarker to monitor disease predisposition and progression, or response to therapy. Here, we summarize the current knowledge, efforts, and obstacles to generate a general consensus on the correlation between HLA-G genetic variability, protein expression, and disease predisposition. Moreover, we discuss perspectives for future investigation on HLA-G genotype/expression in association with disease predisposition and progression.
Journal Article
Recent Advances in Our Understanding of HLA-G Biology: Lessons from a Wide Spectrum of Human Diseases
by
Pistoia, Vito
,
Rouas-Freiss, Nathalie
,
Morandi, Fabio
in
Allografts - immunology
,
Allografts - physiopathology
,
Autoimmune Diseases - immunology
2016
HLA-G is a HLA-class Ib molecule with potent immunomodulatory activities, which is expressed in physiological conditions, where modulation of the immune response is required to avoid allograft recognition (i.e., maternal-fetal interface or transplanted patients). However, HLA-G can be expressed de novo at high levels in several pathological conditions, including solid and hematological tumors and during microbial or viral infections, leading to the impairment of the immune response against tumor cells or pathogens, respectively. On the other hand, the loss of HLA-G mediated control of the immune responses may lead to the onset of autoimmune/inflammatory diseases, caused by an uncontrolled activation of the immune effector cells. Here, we have reviewed novel findings on HLA-G functions in different physiological and pathological settings, which have been published in the last two years. These studies further confirmed the important role of this molecule in the modulation of the immune system.
Journal Article
HLA-G 3'UTR polymorphisms & response to a yoga-based lifestyle intervention in rheumatoid arthritis: A randomized controlled trial
by
Dada, Rima
,
Kumar, Uma
,
Gautam, Surabhi
in
3' Untranslated Regions - genetics
,
Analysis
,
Arthritis, Rheumatoid - genetics
2022
Background & objectives:
Human leucocyte antigen (HLA)-G plays a vital role in immunomodulation in rheumatoid arthritis (RA). The mounting evidence suggests a link between HLA-G gene polymorphisms, disease susceptibility and methotrexate treatment response. Various environmental factors influence the onset and progression of RA and its treatment outcomes. The aim is to identify the treatment response of HLA-G 3' untranslated region polymorphisms to yoga-based lifestyle intervention (YBLI).
Methods:
In this eight-week single-blinded randomized controlled trial (CTRI/2017/05/008589), patients with RA (n=140) were randomized into two groups namely, yoga group or non-yoga group. Baseline genomic DNA was isolated using salting-out method. PCR-based methods were used for genotyping. The levels of soluble (s) HLA-G and disease activity were assessed by ELISA and disease activity score-28-erythrocyte sedimentation rate (DAS28-ESR), respectively, at baseline (day 0) and after eight weeks of intervention.
Results:
Low-producing sHLA-G genotypes, i.e. +3142GG and 14 bp ins/ins, showed a significant increase in sHLA-G levels after YBLI. The association analysis between HLA-G polymorphisms and treatment for RA showed no considerable differential treatment remission in either of the groups (P>0.05). The percentages of improvement were higher in the yoga group as compared to the non-yoga group in both the HLA-G +3142G>C and 14 bp ins/del polymorphisms irrespective of their respective genotypes. No significant association was found between sHLA-G levels and disease activity with respect to genotypes.
Interpretation & conclusions:
Yoga intervention results in improvement and reduced severity of RA in patients irrespective of the HLA-G 14 bp ins/del or +3142G>C polymorphisms. YBLI may be used as an adjunct therapy in RA independent of the genotypes.
Journal Article
Enhanced effect of the immunosuppressive soluble HLA-G2 homodimer by site-specific PEGylation
2025
Human leukocyte antigen (HLA)-G is a nonclassical HLA class I molecule that has an immunosuppressive effect mediated by binding to immune inhibitory leukocyte immunoglobulin-like receptors (LILR) B1 and LILRB2. A conventional HLA-G isoform, HLA-G1, forms a heterotrimeric complex composed of a heavy chain (α1-α3 domains), β2-microglobulin (β2m) and a cognate peptide. One of the other isoforms, HLA-G2, lacks a α2 domain or β2m to form a nondisulfide-linked homodimer, and its ectodomain specifically binds to LILRB2 expressed in human monocytes, macrophages, and dendritic cells. The administration of the ectodomain of HLA-G2, designated the soluble HLA-G2 homodimer, showed significant immunosuppressive effects in mouse models of rheumatoid arthritis and systemic lupus erythematosus, presumably by binding to a mouse ortholog of LILRB2, paired immunoglobulin-like receptor B. However, the refolded soluble HLA-G2 homodimer used in these studies tends to aggregate and degrade; thus, its stability for clinical use has been a concern. In the present study, we improved the stability of the refolded soluble HLA-G2 homodimer via a site-directed PEGylation method. PEGylation at an original free cysteine residue, Cys42, resulted in increased lyophilization and thermal and serum stability. Furthermore, the PEGylated soluble HLA-G2 homodimer could better suppress atopic symptoms in mice than the non-PEGylated homodimer. These results suggest that PEGylated soluble HLA-G2 homodimers could be candidates for immunosuppressive biologics that specifically target LILRB2-positive myelomonocytic antigen-presenting cells.
Journal Article
NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain
by
Hiemisch, Wiebke
,
Celik, Alexander A.
,
Hò, Gia-Gia T.
in
Amino Acid Motifs
,
Apoptosis
,
Biotin - analogs & derivatives
2020
Natural killer (NK) cell therapies are a tool to antagonize a dysfunctional immune system. NK cells recognize malignant cells, traffic to a tumor location, and infiltrate the solid tumor. The immune checkpoint molecule human leukocyte antigen (HLA)-G is upregulated on malignant cells but not on healthy surrounding cells, the requirement of understanding the basis of receptor mediated events at the HLA-G/NK cell interface becomes obvious. The NK cell receptors ILT2 and KIR2DL4 have been described to bind to HLA-G; however, their differential function and expression levels on NK cell subsets suggest the existence of an unreported receptor. Here, we performed a ligand-based receptor capture on living cells utilizing sHLA-G*01:01 molecules coupled to TriCEPS and bound to NK cells followed by mass spectrometric analyses. We could define NKG2A/CD94 as a cognate receptor of HLA-G. To verify the results, we used the reciprocal method by expressing recombinant soluble heterodimeric NKG2A/CD94 molecules and used them to target HLA-G*01:01 expressing cells. NKG2A/CD94 could be confirmed as an immune receptor of HLA-G*01:01. Despite HLA-G is marginal polymorphic, we could previously demonstrate that the most common allelic subtypes HLA-G*01:01/01:03 and 01:04 differ in peptide repertoire, their engagement to NK cells, their catalyzation of dNK cell proliferation and their impact on NK cell development. Continuing these studies with regard to NKG2A/CD94 engagement we engineered recombinant single antigen presenting K562 cells and targeted the surface expressed HLA-G*01:01, 01:03 or 01:04 molecules with NKG2A/CD94. Specificity and sensitivity of HLA-G*01:04/NKG2A/CD94 engagement could be significantly verified. The binding affinity decreases when using K562-G*01:03 or K562-G*01:01 cells as targets. These results demonstrate that the ligand-receptor assignment between HLA-G and NKG2A/CD94 is dependent of the amino acid composition in the HLA-G heavy chain. Understanding the biophysical basis of receptor-mediated events that lead to NK cell inhibition would help to remove non-tumor reactive cells and support personalized mild autologous NK cell therapies.
Journal Article