Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
562
result(s) for
"HSP (heat shock protein)"
Sort by:
PROGRESS STUDY
by
Goknar, Nilufer
,
Alpay, Harika
,
Yildiz, Nurdan
in
Apoptosis
,
Apoptosis - genetics
,
Biochemistry
2021
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.
Journal Article
Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion
2019
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.
Journal Article
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach
by
Chatterjee, Suman
,
Burns, Timothy
in
Animals
,
Antineoplastic Agents - pharmacology
,
Antineoplastic Agents - therapeutic use
2017
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of “client” proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Journal Article
The heat‐shock protein/chaperone network and multiple stress resistance
by
Hirt, Heribert
,
Bendahmane, Abdelhafid
,
Jacob, Pierre
in
Arabidopsis - genetics
,
Arabidopsis - metabolism
,
Arabidopsis thaliana
2017
Summary Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat‐shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone ‘client proteins’, many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat‐shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network.
Journal Article
The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response
2021
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Journal Article
Heat shock protein 90 (HSP90) inhibitors in gastrointestinal cancer: where do we currently stand?—A systematic review
by
Kim-Fuchs, Corina
,
Vashist, Yogesh K.
,
Stroka, Deborah
in
Antineoplastic Agents
,
Cancer Research
,
Clinical trials
2023
Purpose
Dysregulated expression of heat shock proteins (HSP) plays a fundamental role in tumor development and progression. Consequently, HSP90 may be an effective tumor target in oncology, including the treatment of gastrointestinal cancers.
Methods
We carried out a systematic review of data extracted from clinicaltrials.gov and pubmed.gov, which included all studies available until January 1st, 2022. The published data was evaluated using primary and secondary endpoints, particularly with focus on overall survival, progression-free survival, and rate of stable disease.
Results
Twenty trials used HSP90 inhibitors in GI cancers, ranging from phase I to III clinical trials. Most studies assessed HSP90 inhibitors as a second line treatment. Seventeen of the 20 studies were performed prior to 2015 and only few studies have results pending. Several studies were terminated prematurely, due to insufficient efficacy or toxicity. Thus far, the data suggests that HSP90 inhibitor NVP-AUY922 might improve outcome for colorectal cancer and gastrointestinal stromal tumors.
Conclusion
It currently remains unclear which subgroup of patients might benefit from HSP90 inhibitors and at what time point these inhibitors may be beneficial. There are only few new or ongoing studies initiated during the last decade.
Journal Article
Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells
2016
To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm2 for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.
Journal Article
To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis)
2021
Taste aversion learning is universal. In animals, a single presentation of a novel food substance followed hours later by visceral illness causes animals to avoid that taste. This is known as bait-shyness or the Garcia effect. Humans demonstrate this by avoiding a certain food following the development of nausea after ingesting that food (‘Sauce Bearnaise effect’). Here, we show that the pond snail Lymnaea stagnalis is capable of the Garcia effect. A single ‘pairing’ of a novel taste, a carrot slurry followed hours later by a heat shock stressor (HS) is sufficient to suppress feeding response elicited by carrot for at least 24 h. Other food tastes are not suppressed. If snails had previously been exposed to carrot as their food source, the Garcia-like effect does not occur when carrot is ‘paired’ with the HS. The HS up-regulates two heat shock proteins (HSPs), HSP70 and HSP40. Blocking the up-regulation of the HSPs by a flavonoid, quercetin, before the heat shock, prevented the Garcia effect in the snails. Finally, we found that snails exhibit Garcia effect following a period of food deprivation but the long-term memory (LTM) phenotype can be observed only if the animals are tested in a food satiated state.
Journal Article
Melatonin Alleviates High Temperature-Induced Pollen Abortion in Solanum lycopersicum
by
Li, Dao-Yi
,
Zhou, Jie
,
Ahmad, Parvaiz
in
Abortion
,
Antioxidants - pharmacology
,
Ascorbate Peroxidases - genetics
2018
Melatonin is a pleiotropic signal molecule that plays critical roles in regulating plant growth and development, as well as providing physiological protections against various environmental stresses. Nonetheless, the mechanisms for melatonin-mediated pollen thermotolerance remain largely unknown. In this study, we report that irrigation treatment with melatonin (20 µM) effectively ameliorated high temperature-induced inactivation of pollen and inhibition of pollen germination in tomato (Solanum lycopersicum) plants. Melatonin alleviated reactive oxygen species production in tomato anthers under high temperature by the up-regulation of the transcription and activities of several antioxidant enzymes. Transmission electron micrograph results showed that high temperature-induced pollen abortion is associated with a premature degeneration of the tapetum cells and the formation of defective pollen grains with degenerated nuclei at the early uninuclear microspore stage, whilst melatonin protected degradation of organelles by enhancing the expression of heat shock protein genes to refold unfolded proteins and the expression of autophagy-related genes and formation of autophagosomes to degrade denatured proteins. These findings suggest a novel function of melatonin to protect pollen activity under high temperature and support the potential effects of melatonin on reproductive development of plants.
Journal Article
Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress
by
Li, Lifang
,
Liang, Chen
,
Qin, Deqiang
in
Adaptability
,
Biochemistry
,
Biomedical and Life Sciences
2023
Heat shock proteins (HSP) are molecular chaperones involved in many normal cellular processes and environmental stresses. At the genome-wide level, there were no reports on the diversity and phylogeny of the heat shock protein family in Procecidochares utilis. In this study, 43 HSPs were identified from the genome of P. utilis, including 12 small heat shock proteins (sHSPs), 23 heat shock protein 40 (DNAJs), 6 heat shock protein 70 (HSP70s), and 2 heat shock protein 90 (HSP90s). The characteristics of these candidates HSP genes were analyzed by BLAST, and then phylogenetic analysis was carried out. Quantitative real-time PCR (qRT-PCR) was used to analyze the spatiotemporal expression patterns of sHSPs and HSP70s in P. utilis after temperature stress. Results showed that most sHSPs could be induced under heat stress during the adult stage of P. utilis, while a few HSP70s could be induced at the larval stage. This study provides an information framework for the HSP family of P. utilis. Moreover, it lays an important foundation for a better understanding of the role of HSP in the adaptability of P. utilis to various environments.
Journal Article