Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,273
result(s) for
"Habitability"
Sort by:
Impact of space weather on climate and habitability of terrestrial-type exoplanets
2020
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
Journal Article
Temporal variation of planetary iron as a driver of evolution
by
Wade, Jon
,
Ballentine, Chris J.
,
Drakesmith, Hal
in
Bioavailability
,
Biological Availability
,
Biological Evolution
2021
Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host–pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet’s habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO₂.
Journal Article
The geologic history of seawater pH
2017
Although pH is a fundamental property of Earth’s oceans, critical to our understanding of seawater biogeochemistry, its long-timescale geologic history is poorly constrained. We constrain seawater pH through time by accounting for the cycles of the major components of seawater. We infer an increase from early Archean pH values between ~6.5 and 7.0 and Phanerozoic values between ~7.5 and 9.0, which was caused by a gradual decrease in atmospheric pCO₂ in response to solar brightening, alongside a decrease in hydrothermal exchange between seawater and the ocean crust. A lower pH in Earth’s early oceans likely affected the kinetics of chemical reactions associated with the origin of life, the energetics of early metabolisms, and climate through the partitioning of CO₂ between the oceans and atmosphere.
Journal Article
North China Plain threatened by deadly heatwaves due to climate change and irrigation
2018
North China Plain is the heartland of modern China. This fertile plain has experienced vast expansion of irrigated agriculture which cools surface temperature and moistens surface air, but boosts integrated measures of temperature and humidity, and hence enhances intensity of heatwaves. Here, we project based on an ensemble of high-resolution regional climate model simulations that climate change would add significantly to the anthropogenic effects of irrigation, increasing the risk from heatwaves in this region. Under the business-as-usual scenario of greenhouse gas emissions, North China Plain is likely to experience deadly heatwaves with wet-bulb temperature exceeding the threshold defining what Chinese farmers may tolerate while working outdoors. China is currently the largest contributor to the emissions of greenhouse gases, with potentially serious implications to its own population: continuation of the current pattern of global emissions may limit habitability in the most populous region, of the most populous country on Earth.
Irrigation increases the intensity of heatwaves over the North China Plain but how this will be exacerbated by climate change has not been quantified. Here the authors show that irrigation enhances magnitude of extreme wet-bulb temperature and intensity of heatwaves in this region.
Journal Article
Late inception of a resiliently oxygenated upper ocean
by
Rickaby, Rosalind E. M.
,
Edwards, Cole T.
,
Lenton, Timothy M.
in
Atmosphere
,
Biosphere
,
Calcium
2018
To understand the evolution of the biosphere, we need to know how much oxygen was present in Earth's atmosphere during most of the past 2.5 billion years. However, there are few proxies sensitive enough to quantify O 2 at the low levels present until slightly less than 1 billion years ago. Lu et al. measured iodine/calcium ratios in marine carbonates, which are a proxy for dissolved oxygen concentrations in the upper ocean. They found that a major, but temporary, rise in atmospheric O 2 occurred at around 400 million years ago and that O 2 levels underwent a step change to near-modern values around 200 million years ago. Science , this issue p. 174 The I/Ca ratio in marine carbonates tracks atmospheric oxygen levels for the past 2.5 billion years. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.
Journal Article
Does Gaia Play Dice? : Simple Models of non-Darwinian Selection
2024
In this paper we introduce some simple models, based on rolling dice, to explore mechanisms proposed to explain planetary habitability. The idea is to study these selection mechanisms in an analytically tractable setting, isolating their consequences from other details which can confound or obscure their effect in more realistic models. We find that while the observable of interest, the face value shown on the die, `improves' over time in all models, for two of the more popular ideas, Selection by Survival and Sequential Selection, this is down to sampling effects. A modified version of Sequential Selection, Sequential Selection with Memory, implies a statistical tendency for systems to improve over time. We discuss the implications of this and its relationship to the ideas of the `Inhabitance Paradox' and the `Gaian bottleneck'.
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability
2018
The presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that the outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.
Journal Article
Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar
2017
The history of Mars’ atmosphere is important for understanding the geological evolution and potential habitability of the planet. We determine the amount of gas lost to space through time using measurements of the upper-atmospheric structure made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. We derive the structure of 38Ar/36Ar between the homopause and exobase altitudes. Fractionation of argon occurs as a result of loss of gas to space by pickup-ion sputtering, which preferentially removes the lighter atom. The measurements require that 66% of the atmospheric argon has been lost to space. Thus, a large fraction of Mars’ atmospheric gas has been lost to space, contributing to the transition in climate from an early, warm, wet environment to today’s cold, dry atmosphere.
Journal Article
Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction
by
Lunt, Daniel J.
,
Valdes, Paul J.
,
Farnsworth, Alexander
in
"Earth, Atmospheric, and Planetary Sciences"
,
Aerosols
,
Asteroid collisions
2020
SignificanceWe present a quantitative test of end-Cretaceous extinction scenarios and how these would have affected dinosaur habitats. Combining climate and ecological modeling tools, we demonstrate a substantial detrimental effect on dinosaur habitats caused by an impact winter scenario triggered by the Chicxulub asteroid. We were not able to obtain such an extinction state with several modeling scenarios of Deccan volcanism. We further show that the concomitant prolonged eruption of the Deccan traps might have acted as an ameliorating agent, buffering the negative effects on climate and global ecosystems that the asteroid impact produced at the Cretaceous–Paleogene boundary.
The Cretaceous/Paleogene mass extinction, 66 Ma, included the demise of non-avian dinosaurs. Intense debate has focused on the relative roles of Deccan volcanism and the Chicxulub asteroid impact as kill mechanisms for this event. Here, we combine fossil-occurrence data with paleoclimate and habitat suitability models to evaluate dinosaur habitability in the wake of various asteroid impact and Deccan volcanism scenarios. Asteroid impact models generate a prolonged cold winter that suppresses potential global dinosaur habitats. Conversely, long-term forcing from Deccan volcanism (carbon dioxide [CO2]-induced warming) leads to increased habitat suitability. Short-term (aerosol cooling) volcanism still allows equatorial habitability. These results support the asteroid impact as the main driver of the non-avian dinosaur extinction. By contrast, induced warming from volcanism mitigated the most extreme effects of asteroid impact, potentially reducing the extinction severity.
Journal Article
Water Ice and Possible Habitability in the Landing Area of Tianwen-1 Mission
by
Ding, Chunyu
,
Su, Yan
,
Dai, Shun
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Dielectric properties
2024
The Tianwen-1 mission, marking China’s inaugural venture into Mars exploration, successfully deployed the Zhurong rover on Utopia Planitia. This review primarily focuses on the insights provided by the Mars Rover Penetrating Radar (RoPeR), a pivotal component of the mission’s scientific payload. The article synthesizes the RoPeR findings with an emphasis on the geological evolution and potential habitability of the Zhurong rover landing site. The study meticulously investigates the genesis and spatial distribution of water ice within Utopia Planitia, establishing correlations with the Martian climatic and hydrological history, the formation of typical landforms and mineral evidence associated with water ice/liquid water of this region. It further discusses the potential habitability of Mars’ subsurface in the current environmental context. This review also expatiates the techniques used in the analysis of RoPeR data, including the methodology for processing polarimetric radar data and the inversion of the dielectric properties of the Martian subsurface. Through this comprehensive review, we aim to present a cohesive picture of the Tianwen-1 mission’s findings, particularly the Zhurong rover results, and their implications for understanding Mars’ geological past, water ice, and assessing its habitability.
Journal Article