Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,475
result(s) for
"Habitat availability"
Sort by:
Reverse Thinking: A New Method from the Graph Perspective for Evaluating and Mitigating Regional Surface Heat Islands
2021
Accurately locating key nodes and corridors of an urban heat island (UHI) is the basis for effectively mitigating a regional surface UHI. However, we still lack appropriate methods to describe it, especially considering the interaction between UHIs and the role of connectivity (network). Specifically, previous studies paid much attention to the raster and vector perspective—based on standard landscape configuration metrics that only provide an overall statistic over the entire study area without further indicating locations where different types of pattern and fragmentation occur. Therefore, by reverse thinking, here we attempt to propose a new method from the graph perspective which integrates morphological spatial pattern analysis (MSPA)—which is used to characterize binary patterns with emphasis on connections between their parts as measured at varying analysis scales, and habitat availability indices to evaluate and mitigate regional surface UHI. We selected the Pearl River Delta Metropolitan Region (PRDR), one of the most rapidly urbanized regions in the world as the case study (1995–2015). The results of the case study showed: (1) the core (UHI) type accounts for the vast majority of the MSPA model, with the relative land surface temperature (LST) rises, the proportion of the core type will increase, and it could influence the edge (UHI) type significantly; (2) the branch, bridge, and islet (UHI) types have similar results to the lower temperature (4 < Relative LST ≤ 6) area and account for the majority, indicating that these types are more susceptible to their surrounding environment; (3) the importance and extreme importance area (node) from 1995 to 2015 have increased significantly and mainly distributed in the urbanized areas, which means cooling measures need to be implemented in these areas in order of priority. Shifting the research logic of UHI evaluation and mitigation from “patch” to “network”, we hold the point that the method (reverse thinking) has significant theoretical and practical implications for mitigating regional UHI and urban climate-resilience.
Journal Article
Static vs dynamic connectivity: how landscape changes affect connectivity predictions in the Iberian Peninsula
2022
ContextClimate and land-use changes affect species ranges and movements. However, these changes are usually overlooked in connectivity studies, and this could have adverse consequences in the definition of effective management measures.ObjectivesWe evaluated two ways to incorporate landscape dynamics: (i) by analyzing connectivity as a fluctuating phenomenon (i.e., time-varying connectivity); and (ii) by analyzing species movements from past to current ranges (i.e., spatio-temporal connectivity). We also compared these dynamic approaches with traditional static connectivity methods.MethodsWe compared the overall connectivity values and the prioritization of critical habitat patches according to dynamic and static approaches using habitat availability metrics (Probability of Connectivity and Equivalent Connected Area). This comparative research was conducted for species associated with broadleaf forests of the different ecoregions of the Iberian Peninsula. We considered species habitat preferences during movement and a wide range of dispersal abilities to assess functional connectivity.ResultsStatic approaches generated varying overall connectivity values and priority patches depending on the time snapshot considered and different from those generated by dynamic approaches. The two dynamic connectivity approaches resulted in very similar priority conservation patches, indicating their potential to guide enduring conservation measures that enhance connectivity between contemporary habitat patches at multiple time snapshots but also species range shifts in time.ConclusionsConnectivity is affected by landscape changes, and only dynamic approaches can overcome the issues associated with these changes and provide valuable information to guide improved and enduring measures in changing landscapes.
Journal Article
Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways?
by
Saura, Santiago
,
Dondina, Olivia
,
Bani, Luciano
in
Agricultural ecosystems
,
Animal populations
,
Connectivity
2018
ContextRestoring or establishing corridors between residual forest patches is one of the most adopted strategies for the conservation of animal populations and ecosystem processes in fragmented landscapes.ObjectivesThis study aimed to assess whether it is more effective to focus restoration actions on existing corridors or to establish habitats in other strategic areas that can create new dispersal pathways to enhance connectivity.MethodsWe considered a real agroecosystem in northern Italy, based our analyses on graph-theory and habitat availability metrics, and focused on the Hazel Dormouse as the target species. We compared the connectivity increase resulting from (i) the simulated restoration of existing priority corridors, i.e., those with significant presence of forest but in which restoration actions would still result in considerable connectivity gains, or (ii) the simulated plantation of 30 hedgerows along new priority pathways, i.e., those areas with no current forest cover in which habitat creation would be more beneficial for connectivity.ResultsImplementing new priority pathways resulted in substantially larger connectivity gains (+ 38%) than when restoration efforts were concentrated in improving already existing corridors (+ 11%).ConclusionsEstablishing hedgerows along new pathways allowed enhancing the complementary and functionality of the full set of landscape corridors and proved more efficient than just strengthening the areas where dispersal flows were already concentrated. We demonstrated the importance of analytical procedures able to compare the effectiveness of different management strategies for enhancing connectivity. Our approach may be applied to multiple species sensitive to fragmentation in other heterogeneous landscapes and geographical contexts.
Journal Article
Connectivity analysis as a tool for assessing restoration success
by
Gattringer, Johannes P
,
Volk, Xenia K
,
Otte, Annette
in
Agricultural land
,
Arable land
,
Case studies
2018
ContextMethods for measuring restoration success that include functional connectivity between species’ populations are rare in landscape ecology and restoration practices. We developed an approach that analyzes connectivity between populations of target species and their dispersal probabilities to assess restoration success based on easily accessible input data. Applying this method to landscape development scenarios can help optimize restoration planning.ObjectivesWe developed an assessment for restoration success and restoration planning based on functional connectivity between species’ populations and spatially explicit scenarios. The method was used in a case study to test its applicability.MethodsBased on data on available habitat, species’ occurrence and dispersal ranges, connectivity metrics and dispersal probabilities for target species are calculated using the software Conefor Sensinode. The metrics are calculated for scenarios that reflect possible changes in the landscape to provide a basis for future restoration planning. We applied this approach to floodplain meadows along the Upper Rhine for four plant species and three future scenarios.ResultsIn the case study, habitats of the target species were poorly connected. Peucedanum officinale and Sanguisorba officinalis were more successful in recolonizing new habitats than Iris spuria and Serratula tinctoria. The scenarios showed that restoration of species-rich grassland was beneficial for dispersal of the target species. As expected in the agriculturally dominated study area, restoration of former arable land significantly increased dispersal probabilities.ConclusionsIn the case study, the developed approach was easily applicable and provided reasonable results. Its implementation will be helpful in decision-making for future restoration planning.
Journal Article
Functional responses in habitat selection
by
DeCesare, Nicholas J.
,
Squires, John R.
,
Hebblewhite, Mark
in
Analogies
,
Animal behavior
,
Animals
2019
A fundamental challenge in habitat ecology and management is understanding the mechanisms generating animal distributions. Studies of habitat selection provide a lens into such mechanisms, but are often limited by unrealistic assumptions. For example, most studies assume that habitat selection is constant with respect to the availability of resources, such that habitat use remains proportional to availability. To the contrary, a growing body of work has shown the fallacy of this assumption, indicating that animals modify their behavior depending on the context at broader scales. This has been termed a functional response in habitat selection. Furthermore, a diversity of methods is employed to model functional responses in habitat selection, with little attention to how methodology might affect scientific and conservation conclusions. Here, we first review the conceptual and statistical foundations of methods currently used to model functional responses and clarify the ecological tests evaluated within each approach. We then use a combination of simulated and empirical data sets to evaluate the similarities and differences among approaches. Importantly, we identified multiple statistical issues with the most widely applied approaches to understand functional responses, including: (1) a complex and important role of random- or individual-level intercepts in adjusting individual-level regression coefficients as resource availability changes and (2) a sensitivity of results to poorly informed individual-level coefficients estimated for animals with low availability of a given resource. Consequently, we provide guidance on applying approaches that are insensitive to these issues with the goal of advancing our understanding of animal habitat ecology and management. Finally, we characterize the management implications of assuming similarity between the current approaches to model functional responses with two empirical data sets of federally threatened species: Canada lynx (Lynx canadensis) in the United States and woodland caribou (Rangifer tarandus caribou) in Canada. Collectively, our assessment helps clarify the similarities and differences among current approaches and, therefore, assists the integration of functional responses into the mainstream of habitat ecology and management.
Journal Article
Estimating surface area of sponges and gorgonians as indicators of habitat availability on Caribbean coral reefs
by
Courtney, Lee A.
,
Jordan, Stephen J.
,
Santavy, Deborah L.
in
Animal and plant ecology
,
Animal populations
,
Animal, plant and microbial ecology
2013
A rapid method to estimate the three-dimensional (3D) surface area (SA) of marine gorgonians and sponges from field measurements of colony height, diameter, and morphology was developed as an indicator of habitat availability for fish and invertebrates. Colony characteristics for sponges and gorgonians were compiled from field measurements, expert judgment, and taxonomic literature, and employed to generate 3D images using computer-aided design software. The images were used to test various statistical models and geometric surrogates that best estimated SA using only height and diameter measurements. A morphological classification system was devised using shapes and relative proportions of sponges and gorgonians which are commonly found in shallow waters (<25 m depth) of the Central Western Atlantic Ocean. Regression models (linear, quadratic, or cubic) were found to be more robust than geometric surrogates, exhibiting greater accuracy at range extremes. Statistical models explained over 90% of the variation in SA and forecast errors of less than 20%. The best models for estimating SA are presented for eight sponge and nine gorgonian morphologies. Application of these methods with existing estimators for stony corals SA can be used as an indicator of structural habitat availability, which is an important ecosystem service of coral reefs.
Journal Article
Large carnivore expansion in Europe is associated with human population density and land cover changes
by
López Bao, José Vicente
,
Maiorano, L
,
Cengic, M
in
Abandoned land
,
Agricultural land
,
Analysis
2021
Cimatti, M., Ranc, N., Benítez-López, A., Maiorano, L., Boitani, L., Cagnacci, F., Čengić, M., Ciucci, P., Huijbregts, M.A.J., Krofel, M., López-Bao, J.V., Selva, N., Andren, H., Bautista, C., Ćirović, D., Hemmingmoore, H., Reinhardt, I., Marenče, M., Mertzanis, Y., Pedrotti, L., Trbojević, I., Zetterberg, A., Zwijacz-Kozica, T., Santini, L.
Journal Article
Habitat restoration benefits wild bees: A meta-analysis
by
Tonietto, Rebecca K.
,
Larkin, Daniel J.
in
Abundance
,
Agricultural land
,
Agricultural management
2018
1. Pollinator conservation is of increasing interest in the light of managed honeybee (Apis mellifera) declines, and declines in some species of wild bees. Much work has gone into understanding the effects of habitat enhancements in agricultural systems on wild bee abundance, richness and pollination services. However, the effects of ecological restoration targeting \"natural\" ecological endpoints (e.g. restoring former agricultural fields to historic vegetation types or improving degraded natural lands) on wild bees have received relatively little attention, despite their potential importance for countering habitat loss. 2. We conducted a meta-analysis to evaluate the effects of ecological restoration on wild bee abundance and richness, focusing on unmanaged bee communities in lands restored and managed to increase habitat availability and quality. Specifically, we assessed bee abundance and/or richness across studies comparing restored vs. unrestored treatments and studies investigating effects of specific habitat restoration techniques, such as burning, grazing, invasive plant removal and seeding. 3. We analysed 28 studies that met our selection criteria: these represented 11 habitat types and 7 restoration techniques. Nearly all restorations associated with these studies were performed without explicit consideration of habitat needs for bees or other pollinators. The majority of restorations targeted plant community goals, which could potentially have ancillary benefits for bees. 4. Restoration had overall positive effects on wild bee abundance and richness across multiple habitat types. Specific restoration actions, tested independently, also tended to have positive effects on wild bee richness and abundance. 5. Synthesis and applications. We found strong evidence that ecological restoration advances wild bee conservation. This is important given that habitat loss is recognized as a leading factor in pollinator decline. Pollinator responses to land management are rarely evaluated in non-agricultural settings and so support for wild bees may be an underappreciated benefit of botanically focused management. Future restoration projects that explicitly consider the needs of wild bees could be more effective at providing nesting, foraging and other habitat resources. We encourage land managers to design and evaluate restoration projects with the habitat needs of wild bee species in mind.
Journal Article
An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region
by
Brandl, Roland
,
Bässler, Claus
,
Heurich, Marco
in
Airborne lasers
,
Animals
,
Anthropogenic factors
2017
The habitat-amount hypothesis challenges traditional concepts that explain species richness within habitats, such as the habitat-patch hypothesis, where species number is a function of patch size and patch isolation. It posits that effects of patch size and patch isolation are driven by effects of sample area, and thus that the number of species at a site is basically a function of the total habitat amount surrounding this site. We tested the habitat-amount hypothesis for saproxylic beetles and their habitat of dead wood by using an experiment comprising 190 plots with manipulated patch sizes situated in a forested region with a high variation in habitat amount (i.e., density of dead trees in the surrounding landscape). Although dead wood is a spatio-temporally dynamic habitat, saproxylic insects have life cycles shorter than the time needed for habitat turnover and they closely track their resource. Patch size was manipulated by adding various amounts of downed dead wood to the plots (∼800 m3 in total); dead trees in the surrounding landscape (∼240 km2) were identified using airborne laser scanning (light detection and ranging). Over 3 yr, 477 saproxylic species (101,416 individuals) were recorded. Considering 20–1,000 m radii around the patches, local landscapes were identified as having a radius of 40–120 m. Both patch size and habitat amount in the local landscapes independently affected species numbers without a significant interaction effect, hence refuting the island effect. Species accumulation curves relative to cumulative patch size were not consistent with either the habitat-patch hypothesis or the habitat-amount hypothesis: several small dead-wood patches held more species than a single large patch with an amount of dead wood equal to the sum of that of the small patches. Our results indicate that conservation of saproxylic beetles in forested regions should primarily focus on increasing the overall amount of dead wood without considering its spatial arrangement. This means dead wood should be added wherever possible including in local landscapes with low or high dead-wood amounts. For species that have disappeared from most forests owing to anthropogenic habitat degradation, this should, however, be complemented by specific conservation measures pursued within their extant distributional ranges.
Journal Article
Land-use change interacts with climate to determine elevational species redistribution
by
Lenoir, Jonathan
,
Guo, Fengyi
,
Bonebrake, Timothy C.
in
631/158/852
,
704/158/2165
,
704/158/672
2018
Climate change is driving global species redistribution with profound social and economic impacts. However, species movement is largely constrained by habitat availability and connectivity, of which the interaction effects with climate change remain largely unknown. Here we examine published data on 1464 elevational range shifts from 43 study sites to assess the confounding effect of land-use change on climate-driven species redistribution. We show that baseline forest cover and recent forest cover change are critical predictors in determining the magnitude of elevational range shifts. Forest loss positively interacts with baseline temperature conditions, such that forest loss in warmer regions tends to accelerate species’ upslope movement. Consequently, not only climate but also habitat loss stressors and, importantly, their synergistic effects matter in forecasting species elevational redistribution, especially in the tropics where both stressors will increase the risk of net lowland biotic attrition.
Habitat change and warming each contribute to species' elevational range shifts, but their synergistic effects have not been explored. Here, Guo et al. reanalyze published data and show that the interaction between warming and forest change predicts range shifts better than either factor on its own.
Journal Article