Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
69 result(s) for "Haemaphysalis punctata"
Sort by:
Phylogenetic Position of Haemaphysalis kashmirensis and Haemaphysalis cornupunctata, with Notes on Rickettsia spp
Despite high diversity in the Oriental region, ticks of the genus Haemaphysalis have been neglected regarding their genetic data and vector potential. This study aimed to genetically characterize three species of the genus Haemaphysalis: Haemaphysalis cornupunctata, Haemaphysalis kashmirensis, and Haemaphysalis montgomeryi infesting goats and sheep, and Rickettsia spp. associated with these tick species in the Hindu Kush Himalayan range of Pakistan. Altogether, 834 ticks were collected by examining 120 hosts including goats (64/120, 53.3%) and sheep (56/120, 46.6%), in which 86 (71.6%) hosts were found to be tick-infested. The morphologically identified ticks were subjected to DNA extraction and PCR for the amplification of partial 16S rDNA and cox fragments. Rickettsia spp. associated with the collected ticks were detected through the amplification of gltA, ompA and ompB partial fragments. The 16S rDNA of H. cornupunctata and H. montgomeryi showed a maximum identity of 100% with the sequences of the same species, whereas the 16S rDNA of H. kashmirensis showed the highest identity of 93–95% with Haemaphysalis sulcata. The cox sequence of H. montgomeryi displayed 100% identity with the same species. In comparison, the cox sequences of H. cornupunctata and H. kashmirensis showed maximum identities of 87.65–89.22% with Haemaphysalis punctata and 89.34% with H. sulcata, respectively. The gltA sequence of Rickettsia sp. from H. kashmirensis showed the highest identity of 97.89% with Rickettsia conorii subsp. raoultii, while the ompA and ompB fragments from the same DNA samples revealed 100% and 98.16% identity with Rickettsia sp. and “Candidatus Rickettsia longicornii”, respectively. Another gltA sequence amplified from H. montgomeryi ticks showed 100% identity with Rickettsia hoogstraalii, while the attempts to amplify ompA and ompB for R. hoogstraalii were unsuccessful. In the phylogenetic tree, the 16S rDNA of H. cornupunctata clustered with the corresponding species while its cox clustered with H. punctata. Both 16S rDNA and cox sequences of H. kashmirensis clustered with H. sulcata. The gltA sequence of Rickettsia sp. was clustered individually in the spotted fever (SF) group of Rickettsia, while the gltA sequence of R. hoogstraalii was clustered with the same species in the transition group of Rickettsia. In the SF group, the rickettsial ompA and ompB sequence clustered with undetermined Rickettsia sp. and “Candidatus Rickettsia longicornii”, respectively. This is the earliest study regarding the genetic characterization of H. kashmirensis. This study indicated that ticks belong to the genus Haemaphysalis have the potential of harboring and/or transmitting Rickettsia spp. in the region.
A Review of Ixodid Ticks (Acari: Ixodidae) Associated with Lacerta spp. (Reptilia: Lacertidae) from the Caucasus and Adjacent Territory
Based on a literature review, as well as on our own data, 14 ixodid tick species belonging to 5 genera were registered for the lizard hosts of the genus Lacerta (L. agilis, L. media, and L. strigata) in the Caucasus and the adjacent territories: Haemaphysalis sulcata, Haem. punctata, Haem. parva, Haem. caucasica, Haem. concinna, Haem. inermis, Ixodes ricinus, I. redikorzevi, Dermacentor marginatus, D. reticulatus, Hyalomma marginatum, Rhipicephalus bursa, Rh. rossicum, and Rh. turanicum. Tick species Haem. caucasica were recorded from Armenia for the first time. Our findings of Haem. punctata represent the first record of this species for Chechnya, Ingushetia (Russia), Armenia, and Azerbaijan. Most of the parasite species are associated with L. agilis (13) and L. strigata (12); L. media is a host of 6 tick species. Data on the infestation of Lacerta spp. by four tick species from our material (I. ricinus, Haem. punctata, Haem. caucasica, and Hyal. marginatum) are presented in the article. In addition, our article contains information on the range of infections associated with the above tick species. Castor bean tick I. ricinus (236 specimens), the most represented species in our collection, parasitizes all available terrestrial vertebrates including humans and can be vector of many various pathogens, so our study provides significant epidemiological information.
Tick species from Africa by migratory birds: a 3-year study in Italy
The role of resident or migratory birds in dispersal of tick species and tick-borne pathogens is still poorly known in Italy. We report here the results of a 3-year project based on sampling ticks from migratory birds, as well as from the vegetation at three stop-over sites for migrants, namely the islands of Ventotene (Latium), Asinara (Sardinia) and Ustica (Sicily). During the spring seasons from 2017–2019, in total 2681 ticks were collected, 2344 of which were sampled from migratory birds and 337 from the vegetation. Ticks were identified by morphology or by molecular tools when necessary. In total, 16 tick species were identified among which the following were exclusively found on birds: Hyalomma rufipes (43.3%), Hy. truncatum (0.1%), Ixodes frontalis (11.8%), Ix. inopinatus (0.2%), Ix. ricinus (3%), Haemaphysalis punctata (0.08%), Hae. erinacei (0.1%), Amblyomma variegatum (0.08%) and Argas vulgaris 0.1%), whereas five species were exclusively collected from the vegetation: Rhipicephalus bursa (10.5%), Rh. turanicus (5.9%), Rh. sanguineus sensu lato (2%), Rh. pusillus (2.4%), Hae. sulcata (0.08%). Hy. marginatum (10.3%) and Ix. ventalloi (9.3%) were found both on birds and on the vegetation on the island Ustica. It is worth noting that the search for ticks on the vegetation did not detect allochthonous tick species. Although we found several interesting local species and allochthonous ticks like Hy. rufipes, Am. variegatum and Ar. vulgaris on birds, further investigations are needed to better define the possible role of migratory birds in the introduction of ticks and tick-borne diseases in Italy, above all after the evidence of imported ticks positive to Crimean Congo hemorrhagic fever (CCHF) virus in several European countries.
First hemispheric report of invasive tick species Haemaphysalis punctata, first state report of Haemaphysalis longicornis, and range expansion of native tick species in Rhode Island, USA
Background Invasive arthropod vectors and the range expansions of native vectors can lead to public and veterinary health concerns, as these vectors may introduce novel pathogens or spread endemic pathogens to new locations. Recent tick invasions and range expansion in the USA has been attributed to climate and land use change, an increase in global travel, and importations of exotic animals. Methods A 10-year surveillance study was conducted on Block Island, Rhode Island, from 2010 to 2020 including sampling ticks from small mammal and avian hosts. Results We report the discovery and establishment of the red sheep tick ( Haemaphysalis punctata ) for the first time in the western hemisphere and in the US. This invasive species was first collected in 2010 on Block Island, was collected continuously throughout the study, and was collected from an avian host. We document the first report of the invasive Asian longhorned tick ( Haemaphysalis longicornis ) in the state of Rhode Island, first observed at our sites in 2018. Finally, we present data on the range expansion and establishment of two native tick species, the lone star tick and the rabbit tick, on Block Island. Conclusion This study emphasized the importance of long-term surveillance to detect changes in tick host communities, including invasive and expanding native vectors of potential significance to humans and wildlife. Graphical abstract
Exploring the bacteriome in anthropophilic ticks: To investigate the vectors for diagnosis
The aim of this study was to characterize the bacterial microbiome of hard ticks with affinity to bite humans in La Rioja (North of Spain). A total of 88 adult ticks (22 Rhipicephalus sanguineus sensu lato, 27 Haemaphysalis punctata, 30 Dermacentor marginatus and 9 Ixodes ricinus) and 120 I. ricinus nymphs (CRETAV collection, La Rioja, Spain), representing the main anthropophilic species in our environment, were subjected to a metagenomic analysis of the V3-V4 region of the 16S rRNA gene using an Illumina MiSeq platform. Data obtained with Greengenes database were refined with BLAST. Four groups of samples were defined, according to the four tick species. Proteobacteria was the predominant phylum observed in all groups. Gammaproteobacteria was the most abundant class, followed by Alphaproteobacteria for R. sanguineus, H. punctata and D. marginatus but the relative abundance of reads for these classes was reversed for I. ricinus. This tick species showed more than 46% reads corresponding to 'not assigned' OTUs (Greengenes), and >97% of them corresponded to 'Candidatus Midichloriaceae' using BLAST. Within Rickettsiales, 'Candidatus Midichloria', Rickettsia, Ehrlichia, 'Candidatus Neoehrlichia' and Wolbachia were detected. I. ricinus was the most alpha-diverse species. Regarding beta-diversity, I. ricinus and H. punctata samples grouped according to their tick species but microbial communities of some R. sanguineus and D. marginatus specimens clustered together. The metagenomics approach seems useful to discover the spectrum of tick-related bacteria. More studies are needed to identify and differentiate bacterial species, and to improve the knowledge of tick-borne diseases in Spain.
Ticks infesting domestic dogs in the UK: a large-scale surveillance programme
Background Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection. Methods Over a period of 16 weeks (April–July 2015), 1094 veterinary practices were recruited to monitor tick attachment to dogs and provided with a tick collection and submission protocol. Recruitment was encouraged through a national publicity and communication initiative. Participating practices were asked to select five dogs at random each week and undertake a thorough, standardized examination of each dog for ticks. The clinical history and any ticks were then sent to the investigators for identification. Results A total of 12,000 and 96 dogs were examined and 6555 tick samples from infested dogs were received. Ixodes ricinus (Linnaeus) was identified on 5265 dogs (89 %), Ixodes hexagonus Leach on 577 (9.8 %) and Ixodes canisuga Johnston on 46 (0.8 %). Ten dogs had Dermacentor reticulatus (Fabricius), one had Dermacentor variabilis (Say), three had Haemaphysalis punctata Canesteini & Fanzago and 13 had Rhipicephalus sanguineus Latreille. 640 ticks were too damaged for identification. All the R. sanguineus and the single D. variabilis were on dogs with a recent history of travel outside the UK. The overall prevalence of tick attachment was 30 % (range 28–32 %). The relatively high prevalence recorded is likely to have been inflated by the method of participant recruitment. Conclusion The data presented provide a comprehensive spatial understanding of tick distribution and species abundance in the UK against which future changes can be compared. Relative prevalence maps show the highest rates in Scotland and south west England providing a valuable guide to tick-bite risk in the UK.
A Report on Molecular Detection and Phylogenetic Evaluation of Anaplasma marginale in Ticks and Blood Samples Collected from Cattle in District Layyah in Punjab (Pakistan)
Anaplasmosis is a tick-borne disease caused by obligate intercellular gram-negative bacteria, Anaplasma (A.) marginale. The present study reports on seasonal prevalence, epidemiology, and phylogeny of A. marginale in three cattle breeds from District Layyah, Southern Punjab, Pakistan. A total of 844 blood samples (Cross = 300, Holstein Friesian = 244, Sahiwal breed = 300) from apparently healthy cattle on seasonal basis were collected along with epidemiological data during May 2018 till April 2019. Polymerase chain reaction generated 265 base-pair amplicon specific for major surface protein-1b encoding gene of A. marginale in 8.6% (73/844) of enrolled cattle. The highest prevalence was observed during autumn (18.3%) followed by summer (9.7%) and winter season (7.1%). Holstein Friesian breed was most susceptible to A. marginale infection (13.1%) followed by Sahiwal (7.6%) and cross breed (6%). Representative amplified partial gene sequences of A. marginale were submitted to GenBank (Accession numbers MK032842 and MK032843). 37/844 (4.3%) Giemsa-stained blood smears were found positive for Anaplasma spp. Small number of ticks including Hyalomma anatolicum, Hyalomma excavatum, Rhipicephalus microplus, Haemaphysalis punctata were identified from cattle but none of them was found PCR positive for the presence of A. marginale. Analysis of epidemiological factors revealed that female cattle and farm with water supply from pool, farms where other dairy animals and dogs were living with cattle and dogs having ticks load on them had significant association with A. marginale prevalence. It was observed that white blood cell, lymphocytes (%), monocytes (%) hematocrit, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were significantly disturbed in A. marginale-positive than negative cattle.
Analysis of ticks (Acari: Ixodida) and associated microorganisms collected on the North Sea Island of Heligoland
Heligoland is an island located in the North Sea, where vegetation was almost destroyed as a result of heavy bombardment during and after the Second World War. However, over the past 70 years, the vegetation has developed from scrub towards bushy or even forested environments. This change has most likely altered habitat suitability for various organisms, including many species of ticks. Ticks can act as major vectors for various pathogens of humans and animals; thus, characterizing the occurrence of a tick population and associated microorganism on the island is of great importance in relation to public and animal health. For this characterization on Heligoland, we flagged ticks at four different locations during June 2023 and 2024. In 2024, ticks were opportunistically sampled from house pets living on the island and during the annual ringing of common murre ( Uria aalge ) fledglings. In total, 267 ticks were collected over the 2 years which were identified morphologically, and confirmed molecularly if needed, to four species: Ixodes ricinus ( n  = 132), Haemaphysalis punctata ( n  = 47), Ixodes uriae ( n  = 3), and Alectorobius maritimus ( n  = 85), which for the latter represents the first report in Germany. Questing tick samples positive for Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma phagocytophilum , and Babesia spp. were found in one or both years. Subsequent sequencing showed the presence of two Rickettsia species ( R. helvetica , R. aeschlimannii ), multiple Borrelia species ( B. garinii , B. valaisiana , B. bavariensis , B. afzelii ), and two Babesia species ( Ba. venatorum , Ba. capreoli ). Our research highlights a diverse tick and associated microorganism population on the island, which could pose public and animal health risks that will need to be monitored in the future.
Detection of Bartonella tamiae, Coxiella burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria
Background In recent years, the scope and importance of emergent vector-borne diseases has increased dramatically. In Algeria, only limited information is currently available concerning the presence and prevalence of these zoonotic diseases. For this reason, we conducted a survey of hematophagous ectoparasites of domestic mammals and/or spleens of wild animals in El Tarf and Souk Ahras, Algeria. Methods Using real-time PCR, standard PCR and sequencing, the presence of Bartonella spp., Rickettsia spp., Borrelia spp. and Coxiella burnetii was evaluated in 268/1626 ticks, 136 fleas, 11 Nycteribiidae flies and 16 spleens of domestic and/or wild animals from the El Tarf and Souk Ahras areas. Results For the first time in Algeria, Bartonella tamiae was detected in 12/19 (63.2 %) Ixodes vespertilionis ticks, 8/11 (72.7 %) Nycteribiidae spp. flies and in 6/10 (60 %) bat spleens ( Chiroptera spp.). DNA from Coxiella burnetii , the agent of Q fever, was also identified in 3/19 (15.8 %) I. vespertilionis from bats. Rickettsia slovaca , the agent of tick-borne lymphadenopathy, was detected in 1/1 (100 %) Haemaphysalis punctata and 2/3 (66.7 %) Dermacentor marginatus ticks collected from two boars ( Sus scrofa algira ) respectively. Ri. massiliae , an agent of spotted fever, was detected in 38/94 (40.4 %) Rhipicephalus sanguineus sensu lato collected from cattle, sheep, dogs, boars and jackals. DNA of Ri. aeschlimannii was detected in 6/20 (30 %) Hyalomma anatolicum excavatum and 6/20 (30 %) Hy. scupense from cattle. Finally, Ri. felis , an emerging rickettsial pathogen, was detected in 80/110 (72.7 %) Archaeopsylla erinacei and 2/2 (100 %) Ctenocephalides felis of hedgehogs ( Atelerix algirus ). Conclusion In this study, we expanded knowledge about the repertoire of ticks and flea-borne bacteria present in ectoparasites and/or tissues of domestic and wild animals in Algeria.
Borrelia theileri infections in Rhipicephalus annulatus ticks from the north of Iran
Ticks serve as vectors and reservoirs of various Borrelia species, potentially causing diseases in humans and animals. Mazandaran, a fertile green land in northern Iran, provides ample grazing grounds for livestock and harbors at least 26 hard tick species. This study investigated Borrelia infection in hard ticks from forest areas in this region and compared their genetic identity with the species data in the GenBank database. A total of 2,049 ticks were collected manually from mammalian hosts or using dragging and flagging methods. These ticks were then grouped into 190 pools and 41 individuals based on host, species, developmental stage, and gender. A real-time PCR (qPCR) detected Borrelia DNA in 26 pools from female, male, and nymph of Rhipicephalus annulatus (n = 17) and Ixodes ricinus (n = 9) ticks and one individual female Haemaphysalis punctata tick. The generated partial flaB and glpQ sequences from qPCR-positive Rh. annulatus ticks exhibited the highest identities of 98.1-100% and 98.2% with Borrelia theileri and closely related undefined isolates. Additionally, in phylogenetic analysis, these sequences clustered within well-supported clades with B. theileri and the closely related undefined isolates from various geographic regions, confirming the presence of B. theileri in the north of Iran. Divergence in B. theileri flaB and glpQ sequences across various geographical areas suggests potential subspeciation driven by adaptations to different tick species. This divergence in our flaB sequences implies the possible introduction of B. theileri-infected ticks from different geographical origins into Iran.