Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
212 result(s) for "Hall bar"
Sort by:
Emergent Ferromagnetism with Fermi-Liquid Behavior in Proton Intercalated CaRuO3
The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of the coupled intriguing magnetic and electronic states. An effective pathway to explore the nature of non-Fermi-liquid behavior is to approach its phase boundary. Here we report a crossover from non-Fermi-liquid to Fermi-liquid state in metallicCaRuO3through ionic liquid gating induced protonation with electric field. This electronic transition subsequently triggers a reversible magnetic transition with the emergence of an exotic ferromagnetic state from this paramagnetic compound. Our theoretical analysis reveals that hydrogen incorporation plays a critical role in both the electronic and magnetic phase transitions via structural distortion and electron doping. These observations not only help understand the correlated magnetic and electronic transitions in perovskite ruthenate systems, but also provide novel pathways to design electronic phases in correlated materials.
Current distribution in narrow translation-invariant quantum-Hall-systems with lateral density modulation
A previously developed self-consistent screening and magneto-transport theory for laterally confined, translation-invariant quantum-Hall-systems is applied to two-dimensional electron systems created by a donor sheet with a lateral density modulation. The previous calculations, assuming a homogeneous donor charge density, could explain experimental results on the spatial distribution of an applied source-drain-current, and the resulting Hall potential, only for the 'edge-dominated' low-magnetic-field part of a quantum-Hall-plateau, where the current flows through incompressible stripes near the edges. For the high-magnetic-field regime of the plateau, they predicted current flow only in a narrow stripe in the center of the sample, whereas the experiments found current in a wide region of its bulk. Assuming a suitably modulated donor charge density, we can avoid this discrepancy, and we obtain a strong dependence of the distribution of the applied current on magnetic field, lattice temperature, and the current-strength.
Evidence for a Magnetic-Field-Induced Ideal Type-II Weyl State in Antiferromagnetic Topological Insulator Mn ( Bi 1 − x Sb x ) 2 Te 4
The discovery of Weyl semimetals (WSMs) has fueled tremendous interest in condensed matter physics. The realization of WSMs requires the breaking of either inversion symmetry (IS) or time-reversal symmetry (TRS). WSMs can be categorized into type-I and type-II WSMs, which are characterized by untilted and strongly tilted Weyl cones, respectively. Type-I WSMs with breaking of either IS or TRS and type-II WSMs with solely broken IS have been realized experimentally, but a TRS-breaking type-II WSM still remains elusive. In this article, we report transport evidence for a TRS-breaking type-II WSM observed in the intrinsic antiferromagnetic topological insulator Mn(Bi1-xSbx)2Te4 under magnetic fields. This state is manifested by the electronic structure transition caused by the spin-flop transition. The transition results in an intrinsic anomalous Hall effect and negative c -axis longitudinal magnetoresistance attributable to the chiral anomaly in the ferromagnetic phases of lightly hole-doped samples. Our results establish a promising platform for exploring the underlying physics of the long-sought, ideal TRS-breaking type-II WSM.
Emergent Ferromagnetism with Fermi-Liquid Behavior in Proton Intercalated CaRuO 3
The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of the coupled intriguing magnetic and electronic states. An effective pathway to explore the nature of non-Fermi-liquid behavior is to approach its phase boundary. In this work, we report a crossover from non-Fermi-liquid to Fermi-liquid state in metallic CaRuO3 through ionic liquid gating induced protonation with electric field. This electronic transition subsequently triggers a reversible magnetic transition with the emergence of an exotic ferromagnetic state from this paramagnetic compound. Our theoretical analysis reveals that hydrogen incorporation plays a critical role in both the electronic and magnetic phase transitions via structural distortion and electron doping. These observations not only help understand the correlated magnetic and electronic transitions in perovskite ruthenate systems, but also provide novel pathways to design electronic phases in correlated materials.
Electrical Characterization of Germanium Nanowires Using a Symmetric Hall Bar Configuration: Size and Shape Dependence
The fabrication of individual nanowire-based devices and their comprehensive electrical characterization remains a major challenge. Here, we present a symmetric Hall bar configuration for highly p-type germanium nanowires (GeNWs), fabricated by a top-down approach using electron beam lithography and inductively coupled plasma reactive ion etching. The configuration allows two equivalent measurement sets to check the homogeneity of GeNWs in terms of resistivity and the Hall coefficient. The highest Hall mobility and carrier concentration of GeNWs at 5 K were in the order of 100 cm2/(Vs) and 4×1019cm−3, respectively. With a decreasing nanowire width, the resistivity increases and the carrier concentration decreases, which is attributed to carrier scattering in the region near the surface. By comparing the measured data with simulations, one can conclude the existence of a depletion region, which decreases the effective cross-section of GeNWs. Moreover, the resistivity of thin GeNWs is strongly influenced by the cross-sectional shape.
Spatial distribution of thermoelectric voltages in a Hall-bar shaped two-dimensional electron system under a magnetic field
We have investigated the spatial distribution of the electron temperature generated in a two-dimensional electron system (2DES) subjected to a perpendicular magnetic field. We measure thermoelectric voltages between Ohmic contacts located at the end of the voltage-probe arms of a Hall bar fabricated from a GaAs/AlGaAs 2DES wafer, immersed in the mixing chamber of a dilution refrigerator held at 20 mK. Magneto-oscillations due to the Landau quantization are examined for the thermoelectric voltages between the contact pairs straddling the main bar (arrangement to measure the transverse component Vyx), and between the pairs located along the same side of the main bar (arrangement for the longitudinal component Vxx). For the former arrangement, the oscillation amplitude diminishes with the distance from the heater. For the latter arrangement, the pair on one side exhibits much larger amplitude than the pair on the opposite side, and the relation becomes reversed by inverting the magnetic field. The behaviours of the oscillation amplitude are qualitatively explained by the spatial distribution of the electron temperature numerically calculated taking into consideration the thermal diffusion into the voltage contacts and the electron-phonon interaction. For both arrangements, the oscillations are shown to derive predominantly from the transverse (Nernst) component, Syx, of the thermopower tensor. The calculation also reveals that the voltage probes, introducing only minor disturbance at zero magnetic field, substantially reduce the temperature once a magnetic field is applied, and the thermoelectric voltages generated at the voltage arms account for a significant part of the measured voltages.
Down-home cooking exemplified
The fried veggie basket ($7) was a heaping mound of heavily beer-battered vegetables, including mushrooms, green bell peppers, jalapeno peppers and green beans. The garden burger ($11) was packed with wild rice and a veritable garden of vegetables and piled high with cheddar cheese, arugula, avocado, caramelized onions and mushrooms.
Electric control of the spin Hall effect by intervalley transitions
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength—quantified in terms of the SHE angle—is ultimately fixed by the magnitude of the spin–orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by means of an electrical intervalley transition induced in the conduction band. The spin Hall angle was determined by measuring an electromotive force driven by photoexcited spin-polarized electrons drifting through GaAs Hall bars. By controlling electron populations in different (Γ and L) valleys, we manipulated the angle from 0.0005 to 0.02. This change by a factor of 40 is unprecedented in GaAs and the highest value achieved is comparable to that of the heavy metal Pt. The spin Hall effect plays a central role in generating and manipulating spin currents, but its magnitude is ultimately fixed by spin–orbit coupling effects. It is now shown that the spin-Hall-effect angle can be tuned electrically in GaAs.
Upscaling Downtown
Once known for slum-like conditions in its immigrant and working-class neighborhoods, New York City's downtown now features luxury housing, chic boutiques and hotels, and, most notably, a vibrant nightlife culture. While a burgeoning bar scene can be viewed as a positive sign of urban transformation, tensions lurk beneath, reflecting the social conflicts within postindustrial cities.Upscaling Downtownexamines the perspectives and actions of disparate social groups who have been affected by or played a role in the nightlife of the Lower East Side, East Village, and Bowery. Using the social world of bars as windows into understanding urban development, Richard Ocejo argues that the gentrifying neighborhoods of postindustrial cities are increasingly influenced by upscale commercial projects, causing significant conflicts for the people involved. Ocejo explores what community institutions, such as neighborhood bars, gain or lose amid gentrification. He considers why residents continue unsuccessfully to protest the arrival of new bars, how new bar owners produce a nightlife culture that attracts visitors rather than locals, and how government actors, including elected officials and the police, regulate and encourage nightlife culture. By focusing on commercial newcomers and the residents who protest local changes, Ocejo illustrates the contested and dynamic process of neighborhood growth. Delving into the social ecosystem of one emblematic section of Manhattan,Upscaling Downtownsheds fresh light on the tensions and consequences of urban progress.
Photonic spin Hall effect of monolayer black phosphorus in the Terahertz region
As a two-dimensional (2D) material, black phosphorus (BP) has attracted significant attention owing to exotic physical properties such as low-energy band gap, high carrier mobility, and strong in-plane anisotropy. The striking in-plane anisotropy is a promising candidate for novel light-matter interaction. Here, we investigate the photonic spin Hall effect (PSHE) on a monolayer of BP. Due to the in-plane anisotropic property of BP, the PSHE is accompanied with Goos-Hänchen and Imbert-Fedorov effects, resulting in an asymmetric spin splitting. The asymmetric spin splitting can be flexibly tuned by the angle between the incident plane and the armchair crystalline direction of BP and by the carrier density via a bias voltage. The centroid displacements of two opposite spin components of the reflected beam along directions parallel and perpendicular to the incident plane can be considered as four independent channels for information processing. The potential application in barcode-encryption is proposed and discussed. These findings provide a deeper insight into the spin-orbit interaction in 2D material and thereby facilitate the development of optoelectronic devices in the Terahertz region.