Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Haplotype specific variation"
Sort by:
Hybrid-hybrid correction of errors in long reads with HERO
by
Kang, Xiongbin
,
Xu, Jialu
,
Schönhuth, Alexander
in
Accuracy
,
Algorithms
,
Animal Genetics and Genomics
2023
Although generally superior, hybrid approaches for correcting errors in third-generation sequencing (TGS) reads, using next-generation sequencing (NGS) reads, mistake haplotype-specific variants for errors in polyploid and mixed samples. We suggest HERO, as the first “hybrid-hybrid” approach, to make use of both de Bruijn graphs and overlap graphs for optimal catering to the particular strengths of NGS and TGS reads. Extensive benchmarking experiments demonstrate that HERO improves indel and mismatch error rates by on average 65% (27
∼
95%) and 20% (4
∼
61%). Using HERO prior to genome assembly significantly improves the assemblies in the majority of the relevant categories.
Journal Article
The genome of Citrus australasica reveals disease resistance and other species specific genes
2024
Background
The finger lime (
Citrus australasica
), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing.
Results
Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with
C. australis
revealed that 13,661 genes in pseudochromosomes were unique in
C. australasica
. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five
C. australasica
cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the
C. australasica
genome.
Conclusions
The genome of
C. australasica
present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.
Journal Article
HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data
by
Balaban, Metin
,
Myers, Matthew A.
,
Bansal, Vineet
in
Algorithms
,
Allele-specific
,
Animal Genetics and Genomics
2024
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2’s improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Journal Article
Defining a personal, allele-specific, and single-molecule long-read transcriptome
by
Sharon, Donald
,
Snyder, Michael P.
,
Grubert, Fabian
in
Alleles
,
Biological Sciences
,
Cell lines
2014
Personal transcriptomes in which all of an individual's genetic variants (e.g., single nucleotide variants) and transcript isoforms (transcription start sites, splice sites, and polyA sites) are defined and quantified for full-length transcripts are expected to be important for understanding individual biology and disease, but have not been described previously. To obtain such transcriptomes, we sequenced the lymphoblastoid transcriptomes of three family members (GM12878 and the parents GM12891 and GM12892) by using a Pacific Biosciences long-read approach complemented with Illumina 101-bp sequencing and made the following observations. First, we found that reads representing all splice sites of a transcript are evident for most sufficiently expressed genes ≤3 kb and often for genes longer than that. Second, we added and quantified previously unidentified splicing isoforms to an existing annotation, thus creating the first personalized annotation to our knowledge. Third, we determined SNVs in a de novo manner and connected them to RNA haplotypes, including HLA haplotypes, thereby assigning single full-length RNA molecules to their transcribed allele, and demonstrated Mendelian inheritance of RNA molecules. Fourth, we show how RNA molecules can be linked to personal variants on a one-by-one basis, which allows us to assess differential allelic expression (DAE) and differential allelic isoforms (DAI) from the phased full-length isoform reads. The DAI method is largely independent of the distance between exon and SNV—in contrast to fragmentation-based methods. Overall, in addition to improving eukaryotic transcriptome annotation, these results describe, to our knowledge, the first large-scale and full-length personal transcriptome.
Journal Article
Hybrid allele-specific ChIP-seq analysis identifies variation in brassinosteroid-responsive transcription factor binding linked to traits in maize
by
Snodgrass, Samantha J.
,
Seetharam, Arun S.
,
Banf, Michael
in
Allele-specific
,
Alleles
,
Animal Genetics and Genomics
2023
Background
Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches.
Results
Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits.
Conclusion
Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.
Journal Article
Development and Utilization of Functional Kompetitive Allele-Specific PCR Markers for Key Genes Underpinning Fiber Length and Strength in Gossypium hirsutum L
2022
Fiber length (FL) and fiber strength (FS) are the important indicators of fiber quality in cotton. Longer and stronger fibers are preferred for manufacturing finer yarns in the textile industry. Functional markers (FMs) designed from polymorphic sites within gene sequences attributing to phenotypic variation are highly efficient when used for marker-assisted selection (MAS) in breeding superior varieties with longer FL and higher FS. The aims of this study were to develop FMs via kompetitive allele-specific PCR (KASP) assays and to validate the efficacy of the FMs for allele discrimination and the potential value in practice application. We used four single-nucleotide polymorphism markers and 360 cotton accessions and found that two FMs, namely, D11_24030087 and A07_72204443, could effectively differentiate accessions of different genotypes with higher consistency to phenotype. The appeared frequencies of varieties harbored Hap2 (elite alleles G and T) with longer FL (> the mean of accessions with non-elite allele, 28.50 mm) and higher FS (> the mean of accessions with non-elite allele, 29.06 cN•tex –1 ) were 100 and 72.7%, respectively, which was higher than that of varieties harbored only on a single elite allele (G or T, 77.9 or 61.9%), suggesting a favorable haplotype for selecting varieties with superior FL and FS. These FMs could be valuable for the high-throughput selection of superior materials by providing genotypic information in cotton breeding programs.
Journal Article
Comparative chloroplast-specific SNP and nSCoT markers analysis and population structure study in kiwifruit plants
by
Zhang, Yihao
,
Dou, Jiamin
,
Wang, Yu
in
Actinidia
,
Actinidia - genetics
,
Animal Genetics and Genomics
2024
Background
Kiwifruit (Actinidiaceae family) is an economically important fruit tree in China and New Zealand. It is a typical dioecious plant that has undergone frequent natural hybridization, along with chromosomal ploidy diversity within the genus
Actinidia
, resulting in higher genetic differences and horticultural diversity between interspecific and intraspecific traits. This diversity provides a rich genetic base for breeding. China is not only the original center of speciation for the
Actinidia
genus but also its distribution center, housing the most domesticated species:
A. chinensis
var.
chinensis
,
A. chinensis
var.
deliciosa
,
A. arguta
, and
A. polygama
. However, there have been relatively few studies on the application of DNA markers and the genetic basis of kiwifruit plants. By combining information from chloroplast-specific SNPs and nuclear SCoT (nSCoT) markers, we can uncover complementary aspects of genetic variation, population structure, and evolutionary relationships. In this study, one chloroplast DNA (cpDNA) marker pair was selected out of nine cpDNA candidate pairs. Twenty nSCoT markers were selected and used to assess the population structure and chloroplast-specific DNA haplotype diversity in 55 kiwifruit plants (
Actinidia
), including 20 samples of
A. chinensis
var.
chinensis
, 22 samples of
A. chinensis
var.
deliciosa
, 11 samples of
A. arguta
, and two samples of
A. polygama
, based on morphological observations collected from China.
Results
The average genetic distance among the 55 samples was 0.26 with chloroplast-specific SNP markers and 0.57 with nSCoT markers. The Mantel test revealed a very small correlation (
r
= 0.21). The 55 samples were categorized into different sub-populations using Bayesian analysis, the Unweighted Pair Group Method with the Arithmetic Mean (UPGMA), and the Principal Component Analysis (PCA) method, respectively. Based on the analysis of 205 variable sites, a total of 15 chloroplast-specific DNA haplotypes were observed, contributing to a higher level of polymorphism with an Hd of 0.78. Most of the chloroplast-specific DNA haplotype diversity was distributed among populations, but significant diversity was also observed within populations. H1 was shared by 24 samples, including 12 of
A. chinensis
var.
chinensis
and 12 of
A. chinensis
var.
deliciosa
, indicating that H1 is an ancient and dominant haplotype among the 55 chloroplast-specific sequences. H2 may not have evolved further.The remaining haplotypes were rare and unique, with some appearing to be exclusive to a particular variety and often detected in single individuals. For example, the H15 haplotype was found exclusively in
A. polygama
.
Conclusion
The population genetic variation explained by chloroplast-specific SNP markers has greater power than that explained by nSCoTs, with chloroplast-specific DNA haplotypes being the most efficient. Gene flow appears to be more evident between
A. chinensis
var.
chinensis
and
A. chinensis
var.
deliciosa
, as they share chloroplast-specific DNA haplotypes, In contrast,
A.arguta
and
A. polygama
possess their own characteristic haplotypes, derived from the haplotype of
A. chinensis
var.
chinensis
. Compared with
A. chinensis
, the
A.arguta
and
A. polygama
showed better grouping. It also seems crucial to screen out, for each type of molecular marker, especially haplotypes, the core markers of the
Actinidia
genus.
Journal Article
Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds
2019
Background
As one of the important livestock species around the world, goats provide abundant meat, milk, and fiber to fulfill basic human needs. However, the genetic loci that underlie phenotypic variations in domestic goats are largely unknown, particularly for economically important traits. In this study, we sequenced the whole genome of 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) and downloaded the genome sequence data of 30 goats from five other breeds (four non-Chinese and one Chinese breed) and 21 Bezoar ibexes to investigate the genetic composition and selection signatures of the Chinese goat breeds after domestication.
Results
Based on population structure analysis and
F
ST
values (average
F
ST
= 0.22), the genetic composition of Chengdu Brown goats differs considerably from that of Bezoar ibexes as a result of geographic isolation. Strikingly, the genes under selection that we identified in Tibetan Cashmere goats were significantly enriched in the categories hair growth and bone and nervous system development, possibly because they are involved in adaptation to high-altitude. In particular, we found a large difference in allele frequency of one novel SNP (c.-253G>A) in the 5′-UTR of
FGF5
between Cashmere goats and goat breeds with short hair. The mutation at this site introduces a start codon that results in the occurrence of a premature FGF5 protein and is likely a natural causal variant that is involved in the long hair phenotype of cashmere goats. The haplotype tagged with the AGG-allele in exon 12 of
DSG3
, which encodes a cell adhesion molecule that is expressed mainly in the skin, was almost fixed in Tibetan Cashmere goats, whereas this locus still segregates in the lowland goat breeds. The pigmentation gene
KITLG
showed a strong signature of selection in Tibetan Cashmere goats. The genes
ASIP
and
LCORL
were identified as being under positive selection in Jintang Black goats.
Conclusions
After domestication, geographic isolation of some goat breeds has resulted in distinct genetic structures. Furthermore, our work highlights several positively selected genes that likely contributed to breed-related traits in domestic goats.
Journal Article
Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces
by
Sah, Rameshwar Prasad
,
Nithya, Narayanan
,
Jaslam, Poolakkal Muhammed
in
Adaptation
,
Agricultural production
,
Agricultural research
2021
Background
Asian cultivars were predominantly represented in global rice panel selected for sequencing and to identify novel alleles for drought tolerance. Diverse genetic resources adapted to Indian subcontinent were not represented much in spite harboring useful alleles that could improve agronomic traits, stress resilience and productivity. These rice accessions are valuable genetic resource in developing rice varieties suited to different rice ecosystem that experiences varying drought stress level, and at different crop stages. A core collection of rice germplasm adapted to Southwestern Indian peninsular genotyped using SSR markers and characterized by contrasting water regimes to associate genomic regions for physiological, root traits and yield related traits. Genotyping-By-Sequencing of selected accessions within the diverse panel revealed haplotype variation in genic content within genomic regions mapped for physiological, morphological and root traits.
Results
Diverse rice panel (99 accessions) were evaluated in field and measurements on plant physiological, root traits and yield related traits were made over five different seasons experiencing varying drought stress intensity at different crop stages. Traits like chlorophyll stability index, leaf rolling, days to 50% flowering, chlorophyll content, root volume and root biomass were identified as best predictors of grain yield under stress. Association mapping revealed genetic variation among accessions and revealed 14 genomic targets associated with different physiological, root and plant production traits. Certain accessions were found to have beneficial allele to improve traits, plant height, root length and spikelet fertility, that contribute to the grain yield under stress. Genomic characterization of eleven accessions revealed haplotype variation within key genomic targets on chromosomes 1, 4, 6 and 11 for potential use as molecular markers to combine drought avoidance and tolerance traits. Genes mined within the genomic QTL intervals identified were prioritized based on tissue specific expression level in publicly available rice transcriptome data.
Conclusion
The genetic and genomic resources identified will enable combining traits with agronomic value to optimize yield under stress and hasten trait introgression into elite cultivars. Alleles associated with plant height, specific leaf area, root length from PTB8 and spikelet fertility and grain weight from PTB26 can be harnessed in future rice breeding program.
Journal Article
Interplay of the Genetic Variants and Allele Specific Methylation in the Context of a Single Human Genome Study
by
Zayakina, Olga V.
,
Tarasova, Darya A.
,
Keskinov, Anton A.
in
Alleles
,
Blood proteins
,
Chromatin
2025
The methylation of CpG sites with 5mC mark is a dynamic epigenetic modification. However, the relationship between the methylation and the surrounding genomic sequence context remains poorly explored. Investigation of the allele methylation provides an opportunity to decipher the interplay between differences in the primary DNA sequence and epigenetic variation. Here, we performed high-coverage long-read whole-genome direct DNA sequencing of one individual using Oxford Nanopore technology. We also used Illumina whole-genome sequencing of the parental genomes in order to identify allele-specific methylation sites with a trio-binning approach. We have compared the results of the haplotype-specific methylation detection and revealed that trio binning outperformed other approaches that do not take into account parental information. Also, we analysed the cis-regulatory effects of the genomic variations for influence on CpG methylation. To this end, we have used available Deep Learning models trained on the primary DNA sequence to score the cis-regulatory potential of the genomic loci. We evaluated the functional role of the allele-specific epigenetic changes with respect to gene expression using long-read Nanopore RNA sequencing. Our analysis revealed that the frequency of SNVs near allele-specific methylation positions is approximately four times higher compared to the biallelic methylation positions. In addition, we identified that allele-specific methylation sites are more conserved and enriched at the chromatin states corresponding to bivalent promoters and enhancers. Together, these findings suggest that significant impact on methylation can be encoded in the DNA sequence context. In order to elucidate the effect of the SNVs around sites of allele-specific methylation, we applied the Deep Learning model for detection of the cis-regulatory modules and estimated the impact that a genomic variant brings with respect to changes to the regulatory activity of a DNA loci. We revealed higher cis-regulatory impact variants near differentially methylated sites that we further coupled with transcriptomic long-read sequencing results. Our investigation also highlights technical aspects of allele methylation analysis and the impact of sequencing coverage on the accuracy of genomic phasing. In particular, increasing coverage above 30X does not lead to a significant improvement in allele-specific methylation discovery, and only the addition of trio binning information significantly improves phasing. We investigated genomic variation in a single human individual and coupled computational discovery of cis-regulatory modules with allele-specific methylation (ASM) profiling. In this proof-of-concept analysis, we observed that SNPs located near methylated CpG sites on the same haplotype were enriched for sequence features suggestive of high-impact regulatory potential. This finding—derived from one deeply sequenced genome—illustrates how phased genetic and epigenetic data analyses can jointly put forward a hypotheses about the involvement of regulatory protein machinery in shaping allele-specific epigenetic states. Our investigation provides a methodological framework and candidate loci for future studies of genomic imprinting and cis-mediated epigenetic regulation in humans.
Journal Article