Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,555
result(s) for
"Heat tolerance (Biology)"
Sort by:
Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis
2019
Background
Melatonin is a pleiotropic signaling molecule that plays multifarious roles in plants stress tolerance. The polyamine (PAs) metabolic pathway has been suggested to eliminate the effects of environmental stresses. However, the underlying mechanism of how melatonin and PAs function together under heat stress largely remains unknown. In this study, we investigated the potential role of melatonin in regulating PAs and nitric oxide (NO) biosynthesis, and counterbalancing oxidative damage induced by heat stress in tomato seedlings.
Results
Heat stress enhanced the overproduction of reactive oxygen species (ROS) and damaged inherent defense system, thus reduced plant growth. However, pretreatment with 100 μM melatonin (7 days) followed by exposure to heat stress (24 h) effectively reduced the oxidative stress by controlling the overaccumulation of superoxide (O
2
•−
) and hydrogen peroxide (H
2
O
2
), lowering the lipid peroxidation content (as inferred based on malondialdehyde content) and less membrane injury index (MII). This was associated with increased the enzymatic and non-enzymatic antioxidants activities by regulating their related gene expression and modulating the ascorbate–glutathione cycle. The presence of melatonin induced respiratory burst oxidase (
RBOH
), heat shock transcription factors A2 (
HsfA2
), heat shock protein 90 (
HSP90
), and delta 1-pyrroline-5-carboxylate synthetase (
P5CS
) gene expression, which helped detoxify excess ROS via the hydrogen peroxide-mediated signaling pathway. In addition, heat stress boosted the endogenous levels of putrescine, spermidine and spermine, and increased the PAs contents, indicating higher metabolic gene expression. Moreover, melatonin-pretreated seedlings had further increased PAs levels and upregulated transcript abundance, which coincided with suppression of catabolic-related genes expression. Under heat stress, exogenous melatonin increased endogenous NO content along with nitrate reductase- and NO synthase-related activities, and expression of their related genes were also elevated.
Conclusions
Melatonin pretreatment positively increased the heat tolerance of tomato seedlings by improving their antioxidant defense mechanism, inducing ascorbate–glutathione cycle, and reprogramming the PAs metabolic and NO biosynthesis pathways. These attributes facilitated the scavenging of excess ROS and increased stability of the cellular membrane, which mitigated heat-induced oxidative stress.
Journal Article
Response and regulatory mechanisms of heat resistance in pathogenic fungi
by
Xin, Caiyan
,
Zhang, Jinping
,
Huang, Jian
in
Adaptation
,
Adaptation (Physiology)
,
Adaptation, Physiological
2022
Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi.
Key points
• Mechanisms of fungal perception of heat pressure are reviewed.
• The regulatory mechanism of fungal resistance to heat stress is discussed.
• The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.
Journal Article
Acute exposure to sublethal doses of neonicotinoid insecticides increases heat tolerance in honey bees
2022
The European honey bee,
Apis mellifera
L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD
50
and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.
Journal Article
The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia
by
Xue, Xi
,
Sandrelli, Rebeccah M.
,
Beemelmanns, Anne
in
Animal Genetics and Genomics
,
Animals
,
Apoptosis
2021
Background
Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week
− 1
), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon’s hepatic transcriptome expr\\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR.
Results
Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (
hsp90aa1, serpinh1
), apoptosis (
casp8, jund, jak2
) and immune responses (
apod, c1ql2, epx
) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (
cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2
). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance.
Conclusion
Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.
Journal Article
Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review
by
Clarke, Iain J.
,
Dunshea, Frank R.
,
Leury, Brian J.
in
adaptation
,
Adaptation (Physiology)
,
Animals
2020
Climate change is a major global threat to the sustainability of livestock systems. Climatic factors such as ambient temperature, relative humidity, direct and indirect solar radiation and wind speed influence feed and water availability, fodder quality and disease occurrence, with production being most efficient in optimal environmental conditions. Among these climatic variables, ambient temperature fluctuations have the most impact on livestock production and animal welfare. Continuous exposure of the animals to heat stress compromises growth, milk and meat production and reproduction. The capacity of an animal to mitigate effects of increased environmental temperature, without progressing into stress response, differs within and between species. Comparatively, small ruminants are better adapted to hot environments than large ruminants and have better ability to survive, produce and reproduce in harsh climatic regions. Nevertheless, the physiological and behavioral changes in response to hot environments affect small ruminant production. It has been found that tropical breeds are more adaptive to hot climates than high-producing temperate breeds. The growing body of knowledge on the negative impact of heat stress on small ruminant production and welfare will assist in the development of suitable strategies to mitigate heat stress. Selection of thermotolerant breeds, through identification of genetic traits for adaption to extreme environmental conditions (high temperature, feed scarcity, water scarcity), is a viable strategy to combat climate change and minimize the impact on small ruminant production and welfare. This review highlights such adaption within and among different breeds of small ruminants challenged by heat stress.
Journal Article
High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world
2019
Tropical plant species are expected to have high heat tolerance reflecting phenotypic adjustments to warm regions or their evolutionary adaptation history. However, tropical highland specialists adapted to the colder temperatures found in the highlands, where short and prostrated vegetation decouples plants from ambient conditions, could exhibit different upper thermal limits than those of their lowland counterparts. Here we evaluated leaf heat tolerance of 21 tropical alpine paramo species to determine: 1) whether species with restricted distribution (i.e., highland specialists) have lower heat tolerance and are more vulnerable to warming than species with widespread distribution; 2) whether different growth forms have different heat tolerance; and 3) whether species height (i.e., microhabitat) influences its heat tolerance. We quantified heat tolerance by evaluating T50, which is the temperature that causes a reduction in 50% of initial Fv/Fm values and reflects an irreversible damage to the photosynthetic apparatus. Additionally, we estimated the thermal safety margins as the difference between T50 and the maximum leaf temperature registered for the species. All species presented high T50 values ranging between 45.4°C and 53.9°C, similar to those found for tropical lowland species. Heat tolerance was not correlated with species distributions or plant height, but showed a strong relationship with growth form, with rosettes having the highest heat tolerance. Thermal safety margins ranged from 12.1 to 31.0°C. High heat tolerance and broad thermal safety margins suggest low vulnerability of paramo species to warming as long as plants are capable of regulating the leaf temperature within this threshold. Whether paramo plants would be able to regulate leaf temperature if drought episodes become more frequent and transpirational cooling is compromised is the next question that needs to be answered.
Journal Article
Exogenous abscisic acid improves grain filling capacity under heat stress by enhancing antioxidative defense capability in rice
by
Zhong, Xin
,
Cao, Zhiruo
,
Ji, Ping
in
Abscisic acid
,
Abscisic acid (ABA)
,
Abscisic Acid - metabolism
2023
Background
Heat stress is a major restrictive factor that causes yield loss in rice. We previously reported the priming effect of abscisic acid (ABA) on rice for enhanced thermotolerance at the germination, seedling and heading stages. In the present study, we aimed to understand the priming effect and mechanism of ABA on grain filling capacity in rice under heat stress.
Results
Rice plants were pretreated with distilled water, 50 μM ABA and 10 μM fluridone by leaf spraying at 8 d or 15 d after initial heading (AIH) stage and then were subjected to heat stress conditions of 38 °C day/30 °C night for 7 days, respectively. Exogenous ABA pretreatment significantly super-activated the ABA signaling pathway and improved the SOD, POD, CAT and APX enzyme activity levels, as well as upregulated the ROS-scavenging genes; and decreased the heat stress-induced ROS content (O
2
–
and H
2
O
2
) by 15.0–25.5% in rice grain under heat stress. ABA pretreatment also increased starch synthetase activities in rice grain under heat stress. Furthermore, ABA pretreatment significantly improved yield component indices and grain yield by 14.4–16.5% under heat stress. ABA pretreatment improved the milling quality and the quality of appearance and decreased the incidence of chalky kernels and chalkiness in rice grain and improved the rice grain cooking quality by improving starch content and gel consistence and decreasing the amylose percentage under heat stress. The application of paraquat caused overaccumulation of ROS, decreased starch synthetase activities and ultimately decreased starch content and grain yield. Exogenous antioxidants decreased ROS overaccumulation and increased starch content and grain yield under heat stress.
Conclusion
Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing rice grain filling capacity under heat stress at grain filling stage mainly by inhibiting ROS overaccumulation and improving starch synthetase activities in rice grain.
Journal Article
Salicylic acid reverses pollen abortion of rice caused by heat stress
2018
Background
Extremely high temperatures are becoming an increasingly severe threat to crop yields. It is well documented that salicylic acid (SA) can enhance the stress tolerance of plants; however, its effect on the reproductive organs of rice plants has not been described before. To investigate the mechanism underlying the SA-mediated alleviation of the heat stress damage to rice pollen viability, a susceptible cultivar (Changyou1) was treated with SA at the pollen mother cell (PMC) meiosis stage and then subjected to heat stress of 40 °C for 10 d until 1d before flowering.
Results
Under control conditions, no significant difference was found in pollen viability and seed-setting rate in SA treatments. However, under heat stress conditions, SA decreased the accumulation of reactive oxygen species (ROS) in anthers to prevent tapetum programmed cell death (PCD) and degradation. The genes related to tapetum development, such as
EAT1
(Eternal Tapetum 1),
MIL2
(Microsporeless 2), and
DTM1
(Defective Tapetum and Meiocytese 1), were found to be involved in this process. When rice plants were exogenously sprayed with SA or paclobutrazol (PAC, a SA inhibitor) + H
2
O
2
under heat stress, a significantly higher pollen viability was found compared to plants sprayed with H
2
O, PAC, or SA + dimethylthiourea (DMTU, an H
2
O
2
and OH· scavenger). Additionally, a sharp increase in H
2
O
2
was observed in the SA or PAC+ H
2
O
2
treatment groups compared to other treatments.
Conclusion
We suggest that H
2
O
2
may play an important role in mediating SA to prevent pollen abortion caused by heat stress through inhibiting the tapetum PCD.
Journal Article
Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols
by
Strathie, Lorraine
,
Chidawanyika, Frank
,
Fischer, Klaus
in
Acclimation
,
Acclimatization
,
Aging - physiology
2017
Temperature and resource availability are key elements known to limit the occurrence and survival of arthropods in the wild. In the current era of climate change, critical thermal limits and the factors affecting these may be of particular importance. We therefore investigated the critical thermal maxima (CTmax) of adult Zygogramma bicolorata beetles, a biological control agent for the invasive plant Parthenium hysterophorus, in relation to thermal acclimation, hardening, age, and food availability using static (constant) and dynamic (ramping) protocols. Increasing temperatures and exposure times reduced heat survival. In general, older age and lack of food reduced heat tolerance, suggesting an important impact of resource availability. Acclimation at constant temperatures did not affect CTmax, while fluctuating thermal conditions resulted in a substantial increase. Hardening at 33°C and 35°C improved heat survival in fed young and mid-aged but only partly in old beetles, while CTmax remained unaffected by hardening throughout. These findings stress the importance of methodology when assessing heat tolerance. Temperature data recorded in the field revealed that upper thermal limits are at least occasionally reached in nature. Our results therefore suggest that the occurrence of heat waves may influence the performance and survival of Z. bicolorata, potentially impacting on its field establishment and effectiveness as a biological control agent.
Journal Article
Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant
2024
Drought and heat are two stresses that often occur together and may pose significant risks to crops in future climates. However, the combined effects of these two stressors have received less attention than single-stressor investigations. This study used a rapid and straightforward phenotyping method to quantify the variation in 128 African eggplant genotype responses to drought, heat, and the combined effects of heat and drought at the seedling stage. The study found that the morphophysiological traits varied significantly among the 128 eggplants, highlighting variation in response to abiotic stresses. Broad-sense heritability was high (> 0.60) for chlorophyll content, plant biomass and performance index, electrolyte leakage, and total leaf area. Positive and significant relationships existed between biomass and photosynthetic parameters, but a negative association existed between electrolyte leakage and morpho-physiological traits. The plants underwent more significant stress when drought and heat stress were imposed concurrently than under single stresses, with the impact of drought on the plants being more detrimental than heat. There were antagonistic effects on the morphophysiology of the eggplants when heat and drought stress were applied together. Resilient genotypes such as RV100503, RV100501, JAMBA, LOC3, RV100164, RV100169, LOC 3, RV100483, GH5155, RV100430, GH1087, GH1087*, RV100388, RV100387, RV100391 maintained high relative water content, low electrolyte leakage, high Fv/Fm ratio and performance index, and increased biomass production under abiotic stress conditions. The antagonistic interactions between heat and drought observed here may be retained or enhanced during several stress combinations typical of plants' environments and must be factored into efforts to develop climate change-resilient crops. This paper demonstrates improvised climate chambers for high throughput, reliable, rapid, and cost-effective screening for heat and drought and combined stress tolerance in plants.
Journal Article