Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,610 result(s) for "Hedgehog Proteins"
Sort by:
Failure of human rhombic lip differentiation underlies medulloblastoma formation
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1 – 4 . Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5 – 8 . By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9 , 10 . However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3 , 4 . Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2 , CBFA2T3 , PRDM6 , UTX and OTX2 . CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens , and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES + KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB. Derailed differentiation of human-specific progenitors of the developing cerebellar rhombic lip is the cause of group 4 medulloblastoma, the most common childhood brain tumour. 
Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma
In cancer, recurrent somatic single-nucleotide variants—which are rare in most paediatric cancers—are confined largely to protein-coding genes 1 – 3 . Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5′ splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5′ cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes ( PTCH1 ) and activates oncogenes ( GLI2 and CCND2 ), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer. Highly recurrent hotspot r.3A>G mutations are identified in U1 splicesomal small nuclear RNAs in about 50% of Sonic hedgehog medulloblastomas, which result in disrupted RNA splicing and the activation of oncogenes.
Structures of human Patched and its complex with native palmitoylated sonic hedgehog
Hedgehog (HH) signalling governs embryogenesis and adult tissue homeostasis in mammals and other multicellular organisms 1 – 3 . Whereas deficient HH signalling leads to birth defects, unrestrained HH signalling is implicated in human cancers 2 , 4 – 6 . N-terminally palmitoylated HH releases the repression of Patched to the oncoprotein smoothened (SMO); however, the mechanism by which HH recognizes Patched is unclear. Here we report cryo-electron microscopy structures of human patched 1 (PTCH1) alone and in complex with the N-terminal domain of ‘native’ sonic hedgehog (native SHH-N has both a C-terminal cholesterol and an N-terminal fatty-acid modification), at resolutions of 3.5 Å and 3.8 Å, respectively. The structure of PTCH1 has internal two-fold pseudosymmetry in the transmembrane core, which features a sterol-sensing domain and two homologous extracellular domains, resembling the architecture of Niemann–Pick C1 (NPC1) protein 7 . The palmitoylated N terminus of SHH-N inserts into a cavity between the extracellular domains of PTCH1 and dominates the PTCH1–SHH-N interface, which is distinct from that reported for SHH-N co-receptors 8 . Our biochemical assays show that SHH-N may use another interface, one that is required for its co-receptor binding, to recruit PTCH1 in the absence of a covalently attached palmitate. Our work provides atomic insights into the recognition of the N-terminal domain of HH (HH-N) by PTCH1, offers a structural basis for cooperative binding of HH-N to various receptors and serves as a molecular framework for HH signalling and its malfunction in disease. High-resolution structures of the human plasma membrane protein patched 1 alone and in complex with the native form of the ligand sonic hedgehog are determined.
Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm
The Hedgehog (Hh) pathway controls embryonic development and postnatal tissue maintenance and regeneration. Inhibition of Hh receptor Patched (Ptch) by the Hh ligands relieves suppression of signaling cascades. Here, we report the cryo-EM structure of tetrameric Ptch1 in complex with the palmitoylated N-terminal signaling domain of human Sonic hedgehog (ShhN p ) at a 4:2 stoichiometric ratio. The structure shows that four Ptch1 protomers are organized as a loose dimer of dimers. Each dimer binds to one ShhN p through two distinct inhibitory interfaces, one mainly through the N-terminal peptide and the palmitoyl moiety of ShhN p and the other through the Ca 2+ -mediated interface on ShhN p . Map comparison reveals that the cholesteryl moiety of native ShhN occupies a recently identified extracellular steroid binding pocket in Ptch1. Our structure elucidates the tetrameric assembly of Ptch1 and suggests an asymmetric mode of action of the Hh ligands for inhibiting the potential cholesterol transport activity of Ptch1. Hedgehog (Hh) controls embryonic development via interaction with its receptor Patched (Ptch). Here the authors report the cryo-EM structure of tetrameric Ptch1 in complex with the palmitoylated N-terminal signaling domain of human Sonic hedgehog (ShhNp) at a 4:2 stoichiometric ratio.
Cholesterol access in cellular membranes controls Hedgehog signaling
The Hedgehog (Hh) signaling pathway coordinates cell–cell communication in development and regeneration. Defects in this pathway underlie diseases ranging from birth defects to cancer. Hh signals are transmitted across the plasma membrane by two proteins, Patched 1 (PTCH1) and Smoothened (SMO). PTCH1, a transporter-like tumor-suppressor protein, binds to Hh ligands, but SMO, a G-protein-coupled-receptor family oncoprotein, transmits the Hh signal across the membrane. Recent structural, biochemical and cell-biological studies have converged at the surprising model that a specific pool of plasma membrane cholesterol, termed accessible cholesterol, functions as a second messenger that conveys the signal between PTCH1 and SMO. Beyond solving a central puzzle in Hh signaling, these studies are revealing new principles in membrane biology: how proteins respond to and remodel cholesterol accessibility in membranes and how the cholesterol composition of organelle membranes is used to regulate protein function. The Hedgehog (Hh) receptor PTCH1 uses its transporter-like function to inhibit the GPCR SMO by limiting the pool of accessible membrane cholesterol. Cholesterol acts as a ligand for SMO to activate downstream signaling.
Tendon-derived cathepsin K–expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification
Heterotopic ossification (HO) is pathological bone formation characterized by ossification within muscle, tendons, or other soft tissues. However, the cells of origin and mechanisms involved in the pathogenesis of HO remain elusive. Here we show that deletion of suppressor of fused (Sufu) in cathepsin K-Cre-expressing (Ctsk-Cre-expressing) cells resulted in spontaneous and progressive ligament, tendon, and periarticular ossification. Lineage tracing studies and cell functional analysis demonstrated that Ctsk-Cre could label a subpopulation of tendon-derived progenitor cells (TDPCs) marked by the tendon marker Scleraxis (Scx). Ctsk+Scx+ TDPCs are enriched for tendon stem cell markers and show the highest self-renewal capacity and differentiation potential. Sufu deficiency caused enhanced chondrogenic and osteogenic differentiation of Ctsk-Cre-expressing tendon-derived cells via upregulation of Hedgehog (Hh) signaling. Furthermore, pharmacological intervention in Hh signaling using JQ1 suppressed the development of HO. Thus, our results show that Ctsk-Cre labels a subpopulation of TDPCs contributing to HO and that their cell-fate changes are driven by activation of Hh signaling.
Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog)
Stefan Mundlos, Darío Lupiáñez and colleagues investigate CNVs involving the regulatory landscape of IHH (Indian hedgehog), which cause craniosynostosis and synpolydactyly. Using genetic manipulation in mice, they show that Ihh is regulated by at least nine enhancers with individual tissue specificities and that duplications in this region can cause dose-dependent upregulation and also misexpression of Ihh . Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly 1 , 2 . We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions, resulting in growth defects of the skull and long bones, showed that these enhancers function in an additive manner. Duplications, in contrast, caused not only dose-dependent upregulation but also misexpression of Ihh , leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatiotemporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.
Cellular and molecular mechanisms of Hedgehog signalling
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal — Hedgehog protein — is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.Despite the crucial roles of Hedgehog signalling in development and tissue regeneration, aspects of the Hedgehog signalling mechanism have been uncovered only recently. These studies reveal a central role for lipids in the Hedgehog signal activity, and provide new insights into the therapeutic potential of modulating Hedgehog signalling in tissue regeneration.
Smoothened stimulation by membrane sterols drives Hedgehog pathway activity
Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration 1 . Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma 2 . Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models 3 – 5 , a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results—combined with signalling studies and molecular dynamics simulations—delineate the structural basis for PTCH1–SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors. The crystal structure of active mouse SMO in complex with the SAG21k agonist and a stabilizing intracellular binding nanobody reveals the structural basis of SMO regulation by PTCH1.
Unraveling the therapeutic potential of the Hedgehog pathway in cancer
There has been substantial progress in understanding the role of Hedgehog (Hh) signaling in cancer in recent years, as exemplified by the approval by the US Food and Drug Administration of the Hh pathway inhibitor vismodegib in 2012 for the treatment of basal cell carcinoma. This Review outlines these advances and charts the development of Hh inhibitors, providing a critical overview of how these drugs have fared in the clinic. Major progress has been made in recent years in the development of Hedgehog (Hh) pathway inhibitors for the treatment of patients with cancer. Promising clinical trial results have been obtained in cancers that harbor activating mutations of the Hh pathway, such as basal cell carcinoma and medulloblastoma. However, for many cancers, in which Hh ligand overexpression is thought to drive tumor growth, results have been disappointing. Here we review the preclinical data that continue to shape our understanding of the Hh pathway in tumorigenesis and the emerging clinical experience with smoothened inhibitors.