Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,814
result(s) for
"Hematological cancers"
Sort by:
Role of CD47 in Hematological Malignancies
by
Tremblay-LeMay, Rosemarie
,
Chen, Wenming
,
Rastgoo, Nasrin
in
Angiogenic Proteins - metabolism
,
Animals
,
Antibodies
2020
CD47, or integrin-associated protein, is a cell surface ligand expressed in low levels by nearly all cells of the body. It plays an integral role in various immune responses as well as autoimmunity, by sending a potent “don’t eat me” signal to prevent phagocytosis. A growing body of evidence demonstrates that CD47 is overexpressed in various hematological malignancies and its interaction with SIRPα on the phagocytic cells prevents phagocytosis of cancer cells. Additionally, it is expressed by different cell types in the tumor microenvironment and is required for establishing tumor metastasis. Overexpression of CD47 is thus often associated with poor clinical outcomes. CD47 has emerged as a potential therapeutic target and is being investigated in various preclinical studies as well as clinical trials to prove its safety and efficacy in treating hematological neoplasms. This review focuses on different therapeutic mechanisms to target CD47, either alone or in combination with other cell surface markers, and its pivotal role in impairing tumor growth and metastatic spread of various types of hematological malignancies.
Journal Article
The BAFF-APRIL System in Cancer
2023
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Journal Article
Impact of multidrug resistance on outcomes in hematologic cancer patients with bacterial bloodstream infections
2024
Despite the improved outcomes in patients with hematological malignancies, infections caused by multidrug-resistant organisms (MDROs) pose a new threat to these patients. We retrospectively reviewed the patients with hematological cancer and bacterial bloodstream infections (BSIs) at a tertiary hospital between 2003 and 2022 to assess the impact of MDROs on outcomes. Among 328 BSIs, 81 (24.7%) were caused by MDROs. MDRO rates increased from 10.3% (2003–2007) to 39.7% (2018–2022) (
P
< 0.001). The 30-day mortality rate was 25.0%, which was significantly higher in MDRO-infected patients than in non-MDRO-infected patients (48.1 vs. 17.4%;
P
< 0.001). The observed trend was more pronounced in patients with newly diagnosed diseases and relapsed/refractory disease but less prominent in patients in complete remission. Among MDROs, carbapenem-resistant Gram-negative bacteria exhibited the highest mortality, followed by vancomycin-resistant enterococci, methicillin-resistant
Staphylococcus aureus
, and extended-spectrum β-lactamase-producing
Enterobacteriaceae
. Multivariate analysis identified independent risk factors for 30-day mortality as age ≥ 65 years, newly diagnosed disease, relapsed/refractory disease, MDROs, polymicrobial infection, CRP ≥ 20 mg/L, and inappropriate initial antibiotic therapy. In conclusion, MDROs contribute to adverse outcomes in patients with hematological cancer and bacterial BSIs, with effects varying based on the underlying disease status and causative pathogens. Appropriate initial antibiotic therapy may improve patient outcomes.
Journal Article
Real‐world evidence of tisagenlecleucel for the treatment of relapsed or refractory large B‐cell lymphoma
by
Villacampa, Guillermo
,
Caballero, Ana Carolina
,
Reguera‐Ortega, Juan Luis
in
Apheresis
,
B-cell lymphoma
,
Blood cancer
2021
Tisagenlecleucel (tisa‐cel) is a second‐generation autologous CD19‐targeted chimeric antigen receptor (CAR) T‐cell therapy approved for relapsed/refractory (R/R) large B‐cell lymphoma (LBCL). The approval was based on the results of phase II JULIET trial, with a best overall response rate (ORR) and complete response (CR) rate in infused patients of 52% and 40%, respectively. We report outcomes with tisa‐cel in the standard‐of‐care (SOC) setting for R/R LBCL. Data from all patients with R/R LBCL who underwent leukapheresis from December 2018 until June 2020 with the intent to receive SOC tisa‐cel were retrospectively collected at 10 Spanish institutions. Toxicities were graded according to ASTCT criteria and responses were assessed as per Lugano 2014 classification. Of 91 patients who underwent leukapheresis, 75 (82%) received tisa‐cel therapy. Grade 3 or higher cytokine release syndrome and neurotoxicity occurred in 5% and 1%, respectively; non‐relapse mortality was 4%. Among the infused patients, best ORR and CR were 60% and 32%, respectively, with a median duration of response of 8.9 months. With a median follow‐up of 14.1 months from CAR T‐cell infusion, median progression‐free survival and overall survival were 3 months and 10.7 months, respectively. At 12 months, patients in CR at first disease evaluation had a PFS of 87% and OS of 93%. Patients with an elevated lactate dehydrogenase showed a shorter PFS and OS on multivariate analysis. Treatment with tisa‐cel for patients with relapsed/refractory LBCL in a European SOC setting showed a manageable safety profile and durable complete responses. This article provides real‐world European data on the results of relapsed/refractory large B‐cell lymphoma patients treated with tisagenlecleucel.
Journal Article
Modeling the Bone Marrow Microenvironment to Better Understand the Pathogenesis, Progression, and Treatment of Hematological Cancers
2025
Despite significant advancements in understanding the pathogenesis and treatment of hematological malignancies, including leukemia and multiple myeloma, the majority of patients continue to experience poor long-term outcomes. This is partly due to the difficulty of accurately recapitulating the malignant microenvironment in vitro, particularly the bone marrow niche. The complexity of the bone marrow microenvironment poses a challenge for the in vitro examination of hematological malignancies. Traditionally, 2D culture and animal models have been utilized, but these representations are limited and have been criticized for their lack of human physiological relevance. In an attempt to overcome this, 3D models have been developed that more accurately recapitulate the in vivo microenvironment. Herein, we present an overview of recent developments in 2D and 3D models used for studying the bone marrow niche in hematological malignancies, highlighting their advantages and limitations.
Journal Article
Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes
2022
CC-90002 is an anti-CD47 antibody that inhibits CD47-SIRPα interaction and enables macrophage-mediated killing of tumor cells in hematological cancer cell lines. In this first clinical, phase 1, dose-escalation and -expansion study (CC-90002-AML-001; NCT02641002), we evaluated CC-90002 in patients with relapsed/refractory acute myeloid leukemia (AML) or high-risk myelodysplastic syndromes (MDS). CC-90002 was administered in escalating doses of 0.1–4.0 mg/kg, using a modified 3 + 3 design. Primary endpoints included dose-limiting toxicities (DLTs), non-tolerated dose (NTD), maximum tolerated dose (MTD), and recommended phase 2 dose. Secondary endpoints included preliminary efficacy, pharmacokinetics, and presence/frequency of anti-drug antibodies (ADAs). Between March 2016 and July 2018, 28 patients were enrolled (24 with AML and 4 with MDS) at 6 sites across the USA. As of July 18, 2018, all patients had discontinued, mainly due to death or progressive disease. The most common treatment-emergent adverse events were diarrhea (46.4%), thrombocytopenia (39.3%), febrile neutropenia (35.7%), and aspartate aminotransferase increase (35.7%). Four patients experienced DLTs (1 patient had grade 4 disseminated intravascular coagulation and grade 5 cerebral hemorrhage, 1 had grade 3 purpura, 1 had grade 4 congestive cardiac failure and grade 5 acute respiratory failure, and another had grade 5 sepsis). The NTD and MTD were not reached. No objective responses occurred. CC-90002 serum exposure was dose-dependent. ADAs were present across all doses, and the proportion of ADA-positive patients in cycle 1 increased over time. Despite no unexpected safety findings, the CC-90002-AML-001 study was discontinued in dose escalation for lack of monotherapy activity and evidence of ADAs. However, as other anti-CD47 agents in clinical trials are showing promising early results for AML and MDS, understanding preclinical and clinical differences between individual agents in this class will be of high importance.
Journal Article
CAR T cells: engineered immune cells to treat brain cancers and beyond
by
Chen, Xuan-Yu
,
Wang, Jian
,
Gangopadhyay, Moumita
in
Adaptor Proteins, Signal Transducing
,
Antibodies
,
Antigens
2023
Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells’ promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.
Journal Article
The Impact of Outpatient versus Inpatient Administration of CAR-T Therapies on Clinical, Economic, and Humanistic Outcomes in Patients with Hematological Cancer: A Systematic Literature Review
2023
Although chimeric antigen receptor (CAR)-T cell therapies are typically administered in the inpatient setting, outpatient administration is rapidly expanding. However, there is limited summarized evidence comparing outcomes between outpatient and inpatient administration. This systematic literature review aims to compare the safety, efficacy, quality of life (QoL), costs, and healthcare resource utilization (HCRU) outcomes in patients with hematological cancer who are administered CAR-T therapy in an outpatient versus an inpatient setting. Publications (2016 or later) that reported the outcomes of interest in patients treated with a CAR-T therapy in both outpatient and inpatient settings, or only the outpatient setting, were reviewed. In total, 38 publications based on 21 studies were included. Safety findings suggested the comparable frequency of adverse events in the two settings. Eleven studies that reported data in both settings showed comparable response rates (80–82% in outpatient and 72–80% in inpatient). Improvements in the QoL were observed in both settings while costs associated with CAR-T therapy were lower in the outpatient setting. Although unplanned hospitalizations were higher in the outpatient cohort, overall HCRU was lower. Outpatient administration of CAR-T therapy appears to have comparable outcomes in safety, efficacy, and QoL to inpatient administration while reducing the economic burden.
Journal Article
Concurrent ibrutinib plus venetoclax in relapsed/refractory mantle cell lymphoma: the safety run-in of the phase 3 SYMPATICO study
by
Ramchandren, Radhakrishnan
,
Neuenburg, Jutta K.
,
Eckert, Karl
in
Antimitotic agents
,
Antineoplastic agents
,
Apoptosis
2021
Ibrutinib plus venetoclax, given with an ibrutinib lead-in, has shown encouraging clinical activity in early phase studies in mantle cell lymphoma (MCL). The ongoing phase 3 SYMPATICO study evaluates the safety and efficacy of concurrently administered, once-daily, all-oral ibrutinib plus venetoclax in patients with relapsed/refractory MCL. A safety run-in (SRI) cohort was conducted to inform whether an ibrutinib lead-in should be implemented for the randomized portion. Patients received concurrent ibrutinib 560 mg continuously plus venetoclax in a 5-week ramp-up to venetoclax 400 mg for up to 2 years. The primary endpoint was occurrence of tumor lysis syndrome (TLS) and dose-limiting toxicities (DLTs). The SRI cohort enrolled 21 patients; six and 15 were in low- or increased-risk categories for TLS, respectively. During the 5-week venetoclax ramp-up, three patients had DLTs, and one patient at increased risk for TLS had a laboratory TLS; no additional TLS events occurred during follow-up. With a median follow-up of 31 months, the overall response rate was 81% (17/21); 62% (13/21) of patients had a complete response. SRI data informed that the randomized portion should proceed with concurrent ibrutinib plus venetoclax, with no ibrutinib lead-in. Ibrutinib plus venetoclax demonstrated promising efficacy; no new safety signals were observed.
Trial registration
: ClinicalTrials.gov, NCT03112174. Registered 13 April 2017,
https://clinicaltrials.gov/ct2/show/NCT03112174
.
Journal Article