Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,033
result(s) for
"Hemolymph - chemistry"
Sort by:
The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology—A Review
2024
When studying honey bee nutrition, it is important to pay attention not only to the quantity but also to the quality of pollen for floral visitors. The recommended way to determine the value of pollen is to determine both the protein concentration and the amino acid composition in the insect’s hemolymph. In addition, the composition of pollen also includes lipids, sterols and biogenic elements such as carbon, nitrogen, etc. Very high protein concentration is observed in aloe pollen, averaging 51%. Plants with a high protein content, at the level of 27% in Europe, are rapeseed and phacelia. In turn, a plant that is poor in protein (at the level of 11%) is buckwheat. The aforementioned plants are sown over very large areas. Vast acreages in Central and Eastern Europe are occupied by pollen- and nectar-providing invasive plants, such as goldenrod. Therefore, bees are forced to use one food source—a mono diet—which results in their malnutrition. In the absence of natural pollen, beekeepers use other foods for bees; including soy protein, powdered milk, egg yolks, fish meal, etc. However, the colony is the strongest when bees are fed with pollen, as opposed to artificial protein diets. More research is needed on the relationship between bee pollen composition and nutrition, as measured by protein concentration and amino acid composition in apian hemolymph, colony strength, honey yield and good overwintering.
Journal Article
Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales)
by
Boguś, Mieczysława Irena
,
Wrońska, Anna Katarzyna
in
Animals
,
Antimicrobial peptides
,
Biological research
2020
Invertebrates are becoming more popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. The humoral immune response in insects acts by melanization, clotting and the production of reactive oxygen species and antimicrobial peptides, while the cellular immunity system is based on nodulation, encapsulation and phagocytosis. An increasingly popular insect model in biological research is Galleria mellonella, whose larvae are sensitive to infection by the entomopathogenic fungus Conidiobolus coronatus, which can also be dangerous to humans. One group of factors that modulate the response of the immune system during infection in mammals are heat shock proteins (HSPs). The aim of this study was to investigate whether infection by C. coronatus in G. mellonella hemolymph is accompanied by an increase of HSP90, HSP70, HSP60 and HSP27. Larvae (five-day-old last instar) were exposed for 24 hours to fully-grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24) or 24 hours later (F48). The concentration of the HSPs in hemolymph was determined using ELISA. Immunolocalization in hemocytes was performed using fluorescence microscopy and flow cytometry. HSP90, HSP70, HSP60 and HSP27 were found to be present in the G. mellonella hemocytes. HSP60 and HSP90 predominated in healthy insects, with HSP70 and HSP27 being found in trace amounts; HSP60 and HSP27 were elevated in F24 and F48, and HSP90 was elevated in F48. The fungal infection had no effect on HSP70 levels. These findings shed light on the mechanisms underlying the interaction between the innate insect immune response and entomopathogen infection. The results of this innovative study may have a considerable impact on research concerning innate immunology and insect physiology.
Journal Article
Antimicrobial proteins from oyster hemolymph improve the efficacy of conventional antibiotics
2025
Discovering new antibiotics and increasing the efficacy of existing antibiotics are priorities to address antimicrobial resistance. Antimicrobial proteins and peptides (AMPPs) are considered among the most promising antibiotic alternatives and complementary therapies. Here, we build upon previous work investigating the antibacterial activity of a semi-purified hemolymph protein extract (HPE) of the Australian oyster Saccostrea glomerata . HPE showed antimicrobial-biofilm inhibitory activity toward laboratory and clinical strains of Streptococcus pneumoniae and Streptococcus pyogenes at 4.4 and 24.1 μg/mL total protein, respectively. In combination assays, the effectiveness of conventional antibiotics (ampicillin, gentamicin, trimethoprim and ciprofloxacin) was improved between 2 to 32-fold in the presence of HPE (1–12 μg/mL) against a range of clinically important bacteria including Streptococcus spp., Pseudomonas aeruginosa , Moraxella catarrhalis , Klebsiella pneumoniae and Staphylococcus aureus . Effective HPE concentrations are comparable to AMPPs currently approved for use or in clinical trials pipelines. Proteomics analysis of HPE identified a number of proteins including abundant known AMPPs. It was non-toxic to A549 human lung cells up to 205 μg/mL, demonstrating safety well above effective concentrations. Activity was retained with storage at -80°C and ambient laboratory temperature (~24°C), but declined after treatment at either 37°C or 60°C (1 h). This study is in agreement with growing evidence that AMPPs show specificity and a high capacity for synergism with antibiotics. The discovery of HPE provides great opportunities for both pharmaceutical and aquaculture industry development.
Journal Article
Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature
by
Goddard, William A.
,
Juwita, Vonny
,
Kim, Soo-Kyung
in
Animals
,
Antifreeze Proteins - chemistry
,
Antifreeze Proteins - metabolism
2016
The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding insects in winter, and yet, paradoxically are found in some freeze-tolerant insects. Here, we report a previously unidentified role for AFPs in effectively inhibiting trehalose precipitation in the hemolymph (or blood) of overwintering beetle larvae. We determine the trehalose level (29.6 ± 0.6 mg/mL) in the larval hemolymph of a beetle, Dendroides canadensis, and demonstrate that the hemolymph AFPs are crucial for inhibiting trehalose crystallization, whereas the presence of trehalose also enhances the antifreeze activity of AFPs. To dissect the molecular mechanism, we examine the molecular recognition between AFP and trehalose crystal interfaces using molecular dynamics simulations. The theory corroborates the experiments and shows preferential strong binding of the AFP to the fast growing surfaces of the sugar crystal. This newly uncovered role for AFPs may help explain the long-speculated role of AFPs in freeze-tolerant species. We propose that the presence of high levels of molecules important for survival but prone to precipitation in poikilotherms (their body temperature can vary considerably) needs a companion mechanism to prevent the precipitation and here present, to our knowledge, the first example. Such a combination of trehalose and AFPs also provides a novel approach for cold protection and for trehalose crystallization inhibition in industrial applications.
Journal Article
Analysis of glycoalkaloid distribution in the tissues of mealworm larvae (Tenebrio molitor)
by
Winkiel, Magdalena Joanna
,
Słocińska, Małgorzata
,
Diretto, Gianfranco
in
631/443
,
631/92
,
639/638/11
2024
Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by
Solanum
plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of
Tenebrio molitor
using LC‒MS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 μL of 10
−5
M SOL or CHA solution, which corresponds to a dosage range of 0.12–0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.
Journal Article
Effects of salinity on gonadal development, osmoregulation and metabolism of adult male Chinese mitten crab, Eriocheir sinensis
by
Zeng, Chaoshu
,
Cheng, Yongxu
,
Long, Xiaowen
in
Alanine
,
Amino acids
,
Amino Acids - metabolism
2017
As a catadromous species, salinity is a key parameter that affects gonadal development of Chinese mitten crab Eriocheir sinensis during reproductive migration. It is however unclear the effects of salinity on the gonadal development of male E. sinensis as well as their physiological responses to salinity during reproductive migration. This study investigated the effects of four salinities (0 ‰, 6 ‰, 12 ‰ and 18 ‰) on gonadal development, osmoregulation and metabolism of adult male E. sinensis over a 40-day period. The results showed that elevating salinity promote gonadal development, increase hemolymph osmolality and K+ and Mg2+ concentrations (P < 0.05). The 12 ‰ salinity resulted in the highest contents of taurine and arginine in the hemolymph while the highest contents of threonine, phenylalanine, lysine, ß-alanine, tryptophan, ornithine and total free amino acids were found for 0 ‰ treatment (P < 0.05). A decreasing trend was detected for the Na+/K+-ATPase activity and its mRNA expression level in the posterior gills with salinity (P < 0.05). Total saturated fatty acids in the anterior gills decreased with increasing salinity (P < 0.05); the 0 ‰ treatment had the highest total polyunsaturated fatty acids in the posterior gills while total n-6 polyunsaturated fatty acids increased with salinity (P < 0.05). The hemolymph glucose and uric acid showed a decreasing trend as salinity while an increasing trend was found for the hemolymph triglyceride and high-density lipoprotein cholesterol (P < 0.05). The 12 ‰ treatment had the highest levels of hemolymph malonaldehyde and hepatopancreatic γ-glutamyltranspeptidase (P < 0.05). In conclusion, these results suggested that the brackish water promote gonadal development of male E. sinensis, and increase osmolality and ionic concentrations in hemolymph while reduced the activity of Na+ /K+- ATPase and its mRNA expression in the posterior gills as well as metabolism.
Journal Article
Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans
2016
Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollinators. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic phenotype as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibitors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight.
Journal Article
Meta-Analysis and Experimental Evidence Reveal No Impact of Nosema ceranae Infection on Honeybee Carbohydrate Consumption
by
Miler, Krzysztof
,
Moroń, Dawid
,
Rapacz, Marcin
in
Agricultural ecosystems
,
Agricultural production
,
agricultural productivity
2025
Honeybees (
Apis mellifera
) are indispensable pollinators for ecosystem stability and agricultural productivity. However, they face numerous challenges, including pathogens threatening their survival and ecosystem services. Among these pathogens,
Nosema ceranae
, a microsporidian parasite, causes significant damage to the intestinal tract and induces energetic imbalances in the organism, posing a major threat to both individual bees and entire colonies. In response to infections, bees often engage in behavioral defenses, such as self-medicating with antimicrobial substances available in their environment. We hypothesized that bees infected with
N. ceranae
might compensate behaviorally by increasing their carbohydrate consumption. To test this hypothesis, we conducted a meta-analysis of existing studies comparing sugar consumption in healthy and infected bees, complemented by an experimental study. In our experiment, we measured sugar intake and quantified trehalose levels in the hemolymph, a key indicator of energy reserves. Both the meta-analysis and experimental results consistently showed no significant differences in sugar consumption between healthy and infected bees. Similarly, trehalose levels in the hemolymph remained comparable between the two groups. Our findings suggest that the infection caused by
N. ceranae
does not elicit compensatory feeding behavior in honeybees. Moreover, the meta-analysis revealed significant gaps in current research, particularly a lack of studies focusing on forager bees, which face the highest energetic demands among colony members. Our findings call for future studies on the energetic effects of nosemosis and studies conducted under natural or semi-natural conditions.
Journal Article
Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei
by
Shen, Yang
,
Jude Juventus Aweya
,
Zheng, Zhihong
in
Antibacterial activity
,
Antiinfectives and antibacterials
,
Antimicrobial agents
2018
Hemocyanin, the multifunctional glycoprotein in the hemolymph of invertebrates, can generate various antimicrobial peptides (AMPs). Given the rising interest in the use of natural therapeutic agents such as AMPs, alternative and more efficient methods for their generation are being explored. In this work, free online software was first applied to predict the generation of antimicrobial peptides from the large subunit of Litopenaeus vannamei hemocyanin. Twenty potential antimicrobial peptides ranging from 1.5 to 1.9 kDa were predicted, five of which had α-helical structures and were selected for antibacterial activity testing. The results indicated that these five peptides had antibacterial activity against seven different bacteria. Of the five peptides, one peptide, designated L1, had the strongest antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, CD and NMR data showed that L1 had both α-helical and β-turns structural composition, and that these structures were essential for L1’s antibacterial activity. Furthermore, SEM analysis revealed that peptide L1 had broad-spectrum activity against both Gram-positive and Gram-negative bacteria, as it could destroy the bacterial cell walls and kill the bacteria. Thus, L1 is a very potent antimicrobial peptide that can be exploited and used in antibacterial therapeutics.
Journal Article
First Evidence of Immunomodulation in Bivalves under Seawater Acidification and Increased Temperature
2012
Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC) scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario) on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4) at two temperatures (22 and 28°C). Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.
Journal Article