Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Herbs Therapeutic use Encyclopedias."
Sort by:
A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
Endometriosis is a common benign disease in women of reproductive age. Qu's formula (QUF) is a patented Chinese herbal medicine for treating endometriosis that has been proven to be effective in treating and preventing the recurrence of endometriosis. This study is aimed to discover its molecular mechanism and to explore the potential drug targets. A QUF target and endometriosis-related gene set was identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) databases and five disease-gene databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed, and a protein-protein interaction (PPI) network was established to discover the potential mechanism. MalaCards was searched for targets and signaling pathways related to endometriosis, and the search results were also used to identify the key factors in QUF. Molecular docking was performed to visualize the interactions between the effective molecules and proteins encoded by critical genes. Cell experiments and molecular dynamics (MD) simulations were used to further validate the therapeutic effects of the active compounds in QUF on endometriosis. A compound-target network with 117 nodes (94 genes and 23 active compounds) and 224 edges was generated. The results of GO and KEGG analyses indicated that QUF could act by regulating the immune response, apoptosis and proliferation, oxidative stress, and angiogenesis. VEGFA, CXCL8, CCL2, IL1B and PTGS2 were selected for molecular docking analysis from two critical subnetworks with high correlation scores in MalaCards, and the active compounds of QUF had binding potential and high affinity for them. The mRNA expression levels of CCL2, IL1B and PTGS2 significantly decreased after treatment with quercetin. MD simulations showed that the combinations of quercetin and these proteins were relatively stable. The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism by which QUF protects against endometriosis. Our findings not only confirm the clinical effectiveness of QUF but also provide a foundation for further experimental study.
Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis
Chinese medicine formulae possess the potential for cholestasis treatment. This study aimed to explore the underlying mechanisms of San-Huang-Chai-Zhu formula (SHCZF) against cholestasis. The major chemical compounds of SHCZF were identified by high-performance liquid chromatography. The bioactive compounds and targets of SHCZF, and cholestasis-related targets were obtained from public databases. Intersected targets of SHCZF and cholestasis were visualized by Venn diagram. The protein-protein interaction and compound-target networks were established by Cytoscape according to the STRING database. The biological functions and pathways of potential targets were characterized by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The biological process-target-pathway network was constructed by Cytoscape. Finally, the interactions between biological compounds and hub target proteins were validated via molecular docking. There 7 major chemical compounds in SHCZF. A total of 141 bioactive compounds and 83 potential targets were screened for SHCZF against cholestasis. The process of SHCZF against cholestasis was mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. ALB, IL6, AKT1, TP53, TNF, MAPK3, APOE, IL1B, PPARG, and PPARA were the top 10 hub targets. Molecular docking showed that bioactive compounds of SHCZF had a good binding affinity with hub targets. This study predicted that the mechanisms of SHCZF against cholestasis mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. Moreover, APOE, AKT1, and TP53 were the critical hub targets for bioactive compounds of SHCZF.
Network pharmacology and LC-MS approachs to explore the active compounds and mechanisms of Yuanjiang decoction for treating bradyarrhythmia
Yuanjiang decoction (YJD), a traditional Chinese medicinal prescription, has been found to have a significant heart rate-increasing effect and is effective in the treatment of symptomatic bradyarrhythmia in previous studies. However, its specific components and potential mechanisms remain unclear. In this study, we detected and identified the main compounds of YJD using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the core targets of the active components, bradyarrhythmia targets, and obtained potential anti-bradyarrhythmia targets of YJD. We further performed protein to protein interaction (PPI), gene ontology (GO) enrichment analyses and kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses for core targets, and constructed network of key active ingredients-core targets of YJD. Finally, molecular docking and molecular dynamics simulation were performed for key active ingredients and core targets. The YJD contains a total of 35 main chemical components. The key active ingredients-core targets network contains 36 nodes and 90 edges, including 20 key active ingredients and 16 core targets. The core targets in the PPI network were TP53, TNF, HRAS, PPARG, IL1B, KCNH2, SCN5A, IDH1, LMNA, ACHE, F2, DRD2, CALM1, KCNQ1, TNNI3, IDH2 and TNNT2. KEGG pathway analysis showed that YJD treatment of bradyarrhythmia mainly involves neuroactive ligand-receptor interaction, adrenergic signaling in cardiomyocytes, cAMP signaling pathway, calcium signaling pathway, cholinergic synaptic and serotonergic synapse signaling pathway. The biological processes mainly include regulation of hormone levels, regulation of cardiac contraction, chemical synaptic transmission, circadian rhythm, positive regulation of heart rate, smooth muscle contraction, response to metal ion, oxidation-reduction process, neurotransmitter transport and import across plasma membrane. Molecular docking and molecular dynamics simulation results showed that hesperidin and tetrahydropalmatine had higher affinity with DRD2 and KCNQ1, respectively. This study reveals the pharmacodynamic material basis of YJD and its potential multicomponent–multitarget–multipathway pharmacological effects, predicted its potential anti-bradyarrhythmia mechanism may be related to the regulation of myocardial autonomic nervous function and related ion channels. Our work demonstrates that YJD has great potential for treating bradyarrhythmias as a complementary medicine, and the results can provide a theoretical basis for the development and clinical application of YJD. •Yuanjiang decoction (YJD), a traditional Chinese medicinal prescription, has shown significant heart rate-increasing effect and is effective in the treatment of bradyarrhythmias.•The main mechanism of YJD in the treatment of bradyarrhythmia may be the regulation of myocardial autonomic function and the regulation of related ion channels.•Hesperidin and tetrahydropalmatine, the key active components in YJD, have good binding affinity to DRD2 and KCNQ1, respectively, and can form stable complexes.•The systematic strategy integrating LC-MS, network pharmacology, molecular docking and molecular dynamics simulation provides a valuable way to explore the mechanisms and pharmacodynamic material basis of the Chinese medicine formulas.
Sinhyotaklisan as a Potential Therapeutic for Psoriasis: Network Pharmacology and Experimental Validation
Sinhyotaklisan (SHTLS) is a traditional herbal prescription composed of Lonicerae Flos, Angelicae Gigantis Radix, Astragali Radix, and Glycyrrhizae Radix et Rhizoma, commonly used to treat skin disorders. This study aimed to investigate the therapeutic effects and underlying mechanisms of SHTLS in psoriasis through the network pharmacology analysis and experimental validation in vitro and in vivo. Bioactive compounds and molecular targets were identified using the Traditional Chinese Medicine Systems Pharmacology database, and key protein–protein interaction networks were analyzed via STRING and Cytoscape. In vitro, HaCaT cells were pretreated with SHTLS and stimulated with TNF-α, followed by assessments using proliferation assays, scratch assays, quantitative real-time PCR, and Western blotting. In vivo, the anti-psoriatic effects of SHTLS were evaluated in an imiquimod-induced psoriatic mouse model. A total of 36 key targets were significantly enriched in TNF-α, MAPK, HIF-1α, and IL-17 signaling pathways. SHTLS suppressed TNF-α-induced expression of VEGF and HIF-1α, while upregulating p53, thereby inhibiting keratinocyte hyperproliferation and angiogenesis. It also reduced IL-6 and IL-8 levels and blocked activation of the NF-κB and MAPK pathways. Histological analysis confirmed that SHTLS alleviated psoriatic lesions in vivo. These findings suggest that SHTLS may be a promising therapeutic candidate for psoriasis by targeting hyperproliferation, angiogenesis, and inflammation.
Exploring the potential mechanisms of Yi-Yi-Fu-Zi-Bai-Jiang-San therapy on the immune-inflamed phenotype of colorectal cancer via combined network pharmacology and bioinformatics analyses
The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb–compound–target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb–compound–target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs. •A new method was developed to find precise therapeutic targets of YYFZBJS for CRC by network pharmacology and bioinformatics.•YYFZBJS was found to reduce the inflammatory response and activate immune function in the treatment of CRC IIP patients.•A novel herb–compound–target network diagram was designed for visualizing network pharmacology results.•Single-cell analysis was used to validate the expression of prognostic genes in TME cells.•This study provided novel diagnostic indicators and therapeutic targets for CRC.
Mechanism of Xinfeng Capsule in the Treatment of Hypercoagulable State of Ankylosing Spondylitis Based on Data Mining and Network Pharmacology
Background. Ankylosing spondylitis (AS) is a rheumatism that mainly affects the axial bones and joints. Xinfeng capsule (XFC) is a preparation with a remarkable clinical effect that is used in our hospital. And it has definite curative effect and less side effects in the treatment of AS. Objective. Data mining and network pharmacology were used to analyze the efficacy of Chinese medicine Xinfeng capsule on treating the hypercoagulable state of ankylosing spondylitis and the underlying mechanism behind it. Methods. Clinical data were collected and compiled from the Department of Rheumatology and Immunology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Cluster analysis was used to investigate herbs that frequently used to treat AS, Apriori module was used to analyze the association rules between herbs and laboratory indexes, and the random walk model was used to reveal the therapeutic efficacy of XFC against AS. The TCMSP database was used to acquire the active components and targets of XFC, and the GeneCards and OMIM database were used to obtain the targets of AS. Afterward, an active ingredient-target network was established and core targets were screened for; overlapping targets were screened for the protein-protein interaction (PPI) network analysis, the Gene Ontology (GO) enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Molecular docking was adopted to investigate the interactions between main active components and core targets. Results. Frequently used herbs could be divided into three groups, and according to the analysis of Apriori module, there is a strong correlation between XFC and the improvement of ESR and hs-CRP, and the results of the random walk model demonstrated that the effect of XFC on improving PLT, ESR, and hs-CRP was superior to the use of traditional Chinese medicine alone. In total, 103 active compounds of XFC and 59 overlapping targets were obtained. The PPI relationships were obtained through the STRING database, and 13 core targets were identified. 1786 GO enrichment results and 205 KEGG enrichment results were obtained, including NF-kappa B signaling pathway, TNF signaling pathway, and IL17 signaling pathway. The outcomes of molecular docking revealed a close relationship between the active compounds of XFC and core targets. Conclusion. This study demonstrated that XFC can effectively improve the hypercoagulable state and the inflammatory indices of AS patients through data mining, and it has a strong correlation with the clinical improvement of inflammation. The active compounds of formononetin, triptolide, quercetin, and kaempferol may be the key active components of XFC in regulating AS, possibly through inhibiting the activation of NF-kappa B signaling pathway to improve hypercoagulable state.
Systems Pharmacology-Based Research on the Mechanism of Tusizi-Sangjisheng Herb Pair in the Treatment of Threatened Abortion
Threatened abortion (TA) is a common complication with high incidence in the first trimester of pregnancy, which will end in miscarriage if not treated properly. The Chinese herbs Cuscutae Semen (Tusizi in Chinese) and Herba Taxilli (Sangjisheng in Chinese) first recorded in the ancient classic medical book Shennong Bencao Jing are effective and widely used as an herb pair for the treatment of TA, while the active ingredients and the functional mechanism of Tusizi-Sangjisheng herb pair treating TA are still unknown. In order to exploit the relationship between those two herbs and TA, systems pharmacology analysis was carried out in this study. A total of 75 ingredients of Tusizi-Sangjisheng were collected from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). 12 bioactive compounds were screened, and 153 directly related targets were predicted by systematic models. Besides, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to systematically explore the potential mechanisms of Tusizi-Sangjisheng treating TA. Meanwhile, Compound-Target (C-T), Target-Disease (T-D), and Target-Pathway (T-P) networks were constructed to further quest the underlying functional mechanisms of Tusizi-Sangjisheng. As a result, 31 targets and 3 key pathways were found to be directly related to TA that includes mitogen-activated protein kinases (MAPKs), phosphatidylinositol-3-kinase/protein kinase B (PI3K-Akt), and transforming growth factor-β (TGF-β) signaling pathways. The results in this study may provide some valuable clues about the molecular mechanisms of the efficient Chinese herb pair Tusizi-Sangjisheng in the treatment of TA.
Study on the Mechanism of Improving HIV/AIDS Immune Function with Jian Aikang Concentrated Pill Based on Network Pharmacology Combined with Experimental Validation
This study was the first to screen the active compounds of Jian Aikang Concentrated Pill (JAKCP) with network pharmacology, predict its potential targets, screen the signaling pathways, and combine with cellular experimental validation to explore the potential mechanism of JAKCP for the treatment of acquired immunodeficiency syndrome (AIDS). The main compounds and targets of Chinese herbs in JAKCP were identified by TCMSP; the targets of AIDS were collected from Genecards, Online Mendelian Inheritance in Man (OMIM), Disgenet, Therapeutic Target Database (TTD) and Drugbank; the network of \"Chinese herbs-active compounds-targets\" for JAKCP was constructed by Cytoscape, and protein-protein interaction (PPI) network was constructed using STRING to generate the intersection targets, Metascape was conducted to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the network of \"main active compounds-core targets-pathways\" was constructed by Cytoscape. Finally, the effect of JAKCP on the survival rate of HIV pseudovirus-infected MT-4 cells was investigated by CCK-8 assay, and the predicted targets were verified by ELISA, qPCR and Western blot. A total of 147 active compounds of JAKCP were screened covering 351 targets and 416 AIDS disease targets were obtained, besides 140 intersection targets and 321 KEGG pathways were collected. Ultimately, quercetin, kaempferol, stigmasterol, beta-sitosterol, epigallocatechin gallate were identified as the important compounds, the core targets are HSP90AA1, IL-10, IL-6, TNF, IL-1β, TP53, and IL-1ɑ, and the biological pathways and processes mainly include T cell activation, regulation of DNA-binding transcription factor activity and apoptotic signaling pathway. Experiments on the targets of \"T cell activation\" demonstrated that JAKCP promotes the survival of HIV pseudovirus-infected MT-4 cells. Also, JAKCP down-regulated mRNA and protein levels of IL-1ɑ, IL-1β, and IL-6 while up-regulated mRNA and protein levels of IL-2, IL-6ST, and IL-10 in vitro. JAKCP exerted regulatory immune functions through multi-component, multi-target and multi-pathway, thereby providing novel ideas and clues for the treatment of AIDS.
Compendia of world's medicinal flora
Alternative systems of medicine (Ayurveda, Siddha, Homoepathy, Traditional Chinese Medicine and Western Medcila Herbalism) utilizes medicinal plants for formulations. The present work is aimed at documentation of chemical composition, medicinal use and modern investigative work on medicinal plants. As the name of the title suggests, the work includ