Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
550 result(s) for "Heteroptera - physiology"
Sort by:
Evidence for carry-over effects of predator exposure on pathogen transmission potential
Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology.
The evolution of autotomy in leaf-footed bugs
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (< 2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.
Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet
Evolutionary adaptations for the exploitation of nutritionally challenging or toxic host plants represent a major force driving the diversification of phytophagous insects. Although symbiotic bacteria are known to have essential nutritional roles for insects, examples of radiations into novel ecological niches following the acquisition of specific symbionts remain scarce. Here we characterized the microbiota across bugs of the family Pyrrhocoridae and investigated whether the acquisition of vitamin-supplementing symbionts enabled the hosts to diversify into the nutritionally imbalanced and chemically well-defended seeds of Malvales plants as a food source. Our results indicate that vitamin-provisioning Actinobacteria ( Coriobacterium and Gordonibacter ), as well as Firmicutes ( Clostridium ) and Proteobacteria ( Klebsiella ) are widespread across Pyrrhocoridae, but absent from the sister family Largidae and other outgroup taxa. Despite the consistent association with a specific microbiota, the Pyrrhocoridae phylogeny is neither congruent with a dendrogram based on the hosts’ microbial community profiles nor phylogenies of individual symbiont strains, indicating frequent horizontal exchange of symbiotic partners. Phylogenetic dating analyses based on the fossil record reveal an origin of the Pyrrhocoridae core microbiota in the late Cretaceous (81.2–86.5 million years ago), following the transition from crypt-associated beta-proteobacterial symbionts to an anaerobic community localized in the M3 region of the midgut. The change in symbiotic syndromes (that is, symbiont identity and localization) and the acquisition of the pyrrhocorid core microbiota followed the evolution of their preferred host plants (Malvales), suggesting that the symbionts facilitated their hosts’ adaptation to this imbalanced nutritional resource and enabled the subsequent diversification in a competition-poor ecological niche.
Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture
In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola , the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola . The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
Self-removal of condensed water on the legs of water striders
The ability to control drops and their movements on phobic surfaces is important in printing or patterning, microfluidic devices, and water-repellent materials. These materials are always micro-/nanotextured, and a natural limitation of repellency occurs when drops are small enough (as in a dew) to get trapped in the texture. This leads to sticky Wenzel states and destroys the superhydrophobicity of the material. Here, we show that droplets of volume ranging from femtoliter (fL) to microliter (μL) can be self-removed from the legs of water striders. These legs consist of arrays of inclined tapered setae decorated by quasi-helical nanogrooves. The different characteristics of this unique texture are successively exploited as water condenses, starting from self-penetration and sweeping effect along individual cones, to elastic expulsion between flexible setae, followed by removal at the anisotropic leg surface. We envision that this antifogging effect at a very small scale could inspire the design of novel applicable robust water-repellent materials for many practical applications.
A new fossil plesiomorphic flat bug (Aradidae) suggests widespread flower visiting in Heteroptera during the Mesozoic
The phenomenon of flower visiting (anthophily) and the pollination, though becoming prevalent with the rise of flowering angiosperms, hypothesized to have originated from the antagonistic relationship of florivory between insects and gymnosperms in the Upper Jurassic. Though not commonly known, this behaviour has been documented in several instances among the representatives of the suborder Heteroptera, i.e., the true bugs. Here, we describe Shaykayatcoris michalskii gen. nov., sp. nov., the first known representative of the plesiomorphic flat bug (Aradidae) subfamily Prosympiestinae in the Upper Cretaceous Burma Terrane amber fauna (Lowermost Cenomanian, ca. 99 Mya). Besides expanding the knowledge on the heteropteran insect fauna of the Lagerstätte, the discovery of this new true bug provides intriguing insights into the evolutionary history of true bugs. First, the new record corroborates that the subfamily Prosympiestinae is a Gondwanan relict group among the representatives of flat bugs. Second, this insect presents the first known incidence of iridescent colouration in flat bugs with a tentative role of camouflage, suggesting a more exposed lifestyle compared to the apomorphic lineages of flat bugs, which have adapted to live under tree bark. Third, the iridescence and the high amount of pollen among the syninclusions suggest that the insect was likely to be anthophilous. The suspected presence of anthophily in such a specialised heteropteran insect group like Aradidae suggests that anthophily was more widespread among the Mesosoic true bugs than it can be observed in the case of extant taxa.
A foul odor from the mesozoic: early evolution of scent gland defense in pentatomomorphan true bugs (Hemiptera: Heteroptera)
Background Insects have evolved various antipredator defenses, some of which produce copious chemicals when threatened, such as ants, beetles, butterflies, moths, stick insects, and true bugs. The true bugs (Hemiptera: Heteroptera) are known for their foul odor, which comprises over 45,000 species of biologically and economically important insects. One key element to the success of heteropterans is the evolution of specialized defensive glands, specifically the metathoracic scent gland in adults and the dorsal abdominal scent glands in nymphs, a hallmark synapomorphy for the clade. Within Pentatomomorpha, the scent gland peritreme exhibits remarkable morphological diversity, yet its evolutionary origins and drivers remain poorly understood due to sparse fossil evidence of these delicate structures. Results We report a series of Mesozoic fossils with well-preserved scent gland anatomy, including the earliest evidence from the Jurassic (165 million years ago), revealing an ancestral auricle-type morphology. Ancestral-state reconstruction across 40 extant and fossil taxa confirms the auricle as the plesiomorphic condition for Pentatomomorpha. Fossil evidence demonstrates phenotypic diversification by the Early Cretaceous (~ 125 Ma), with many peritreme types (auricle, spout, groove) emerging by the mid-Cretaceous. Developmental analyses of extant taxa show no pre-adult differentiation, indicating rapid peritreme formation during the final molt. Conclusions The scent gland peritreme evolved as a rapidly developing from a simple underdeveloped to auricle to five well-developed basic derived types in early Pentatomomorpha. Its subsequent diversification into specialized forms coincided with mid-Mesozoic habitat shifts and predator pressures, particularly during angiosperm proliferation. Convergent morphologies across lineages reflect shared ecological constraints and developmental plasticity.
Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae)
This research investigated the effects of neem oil on mortality, survival and malformations of the non-target stink bug predator, Podisus nigrispinus . Neurotoxic and growth inhibitor insecticides were used to compare the lethal and sublethal effects from neem oil on this predator. Six concentrations of neem oil were topically applied onto nymphs and adults of this predator. The mortality rates of third, fourth, and fifth instar nymphs increased with increasing neem oil concentrations, suggesting low toxicity to P. nigrispinus nymphs. Mortality of adults was low, but with sublethal effects of neem products on this predator. The developmental rate of P. nigrispinus decreased with increasing neem oil concentrations. Longevity of fourth instar nymphs varied from 3.74 to 3.05 d, fifth instar from 5.94 to 4.07 d and adult from 16.5 and 15.7 d with 0.5 and 50% neem doses. Podisus nigrispinus presented malformations and increase with neem oil concentrations. The main malformations occur in wings, scutellum and legs of this predator. The neem oil at high and sub lethal doses cause mortality, inhibits growth and survival and results in anomalies on wings and legs of the non-traget predator P. nigrispinus indicating that its use associated with biological control should be carefully evaluated.
Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont
Specialized host–microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis , and its bacterial symbionts in the genus Caballeronia . We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host–microbe symbioses and microbe–microbe interactions within host-associated microbiomes.
The Importance of Gut Symbionts in the Development of the Brown Marmorated Stink Bug, Halyomorpha halys (Stål)
The invasive brown marmorated stink bug, Halyomorpha halys (Stål), has become a severe agricultural pest and nuisance problem since its introduction in the U.S. Research is being conducted to understand its biology and to find management solutions. Its symbiotic relationship with gut symbionts is one aspect of its biology that is not understood. In the family Pentatomidae, the reliance on gut symbionts for successful development seems to vary depending on the species of stink bug. This research assessed the role of gut symbionts in the development, survivorship, and fecundity of H. halys. We compared various fitness parameters of nymphs and adults reared from surface sterilized and untreated egg masses during two consecutive generations under laboratory conditions. Results provided direct evidence that H. halys is negatively impacted by the prevention of vertical transmission of its gut symbionts and that this impact is significant in the first generation and manifests dramatically in the subsequent generation. Developmental time and survivorship of treated cohorts in the first generation were significantly affected during third instar development through to the adult stage. Adults from the sterilized treatment group exhibited longer pre-oviposition periods, produced fewer egg masses, had significantly smaller clutch sizes, and the hatch rate and survivorship of those eggs were significantly reduced. Observations following hatch of surface sterilized eggs also revealed significant effects on wandering behavior of the first instars. The second generation progeny from adults of the sterilized cohorts showed significantly lower survival to adulthood, averaging only 0.3% compared to 20.8% for the control cohorts. Taken together, results demonstrate that H. halys is heavily impacted by deprival of its gut symbionts. Given the economic status of this invasive pest, further investigations may lead to management tactics that disrupt this close symbiotic relationship in the biology of H. halys.