Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,484 result(s) for "Heterotrophic microorganisms"
Sort by:
Dual roles of microbes in mediating soil carbon dynamics in response to warming
Understanding the alterations in soil microbial communities in response to climate warming and their controls over soil carbon (C) processes is crucial for projecting permafrost C-climate feedback. However, previous studies have mainly focused on microorganism-mediated soil C release, and little is known about whether and how climate warming affects microbial anabolism and the subsequent C input in permafrost regions. Here, based on a more than half-decade of in situ warming experiment, we show that compared with ambient control, warming significantly reduces microbial C use efficiency and enhances microbial network complexity, which promotes soil heterotrophic respiration. Meanwhile, microbial necromass markedly accumulates under warming likely due to preferential microbial decomposition of plant-derived C, further leading to the increase in mineral-associated organic C. Altogether, these results demonstrate dual roles of microbes in affecting soil C release and stabilization, implying that permafrost C-climate feedback would weaken over time with dampened response of microbial respiration and increased proportion of stable C pool. Understanding microbial responses to climate warming is crucial for projecting permafrost carbon-climate feedback. Here, the authors reveal dual microbial roles in promoting both soil carbon release and stable soil carbon accrual under warming scenario.
Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants
As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs. Activated sludge (AS) systems in wastewater treatment plants (WWTPs) contain high concentration of viruses. Here, the authors apply a systematic metagenomic pipeline and retrieve a catalogue of around 50,000 prokaryotic viruses from samples of six WWTPs, revealing a large and uncharacterized viral diversity in AS communities.
Development of serum-free and grain-derived-nutrient-free medium using microalga-derived nutrients and mammalian cell-secreted growth factors for sustainable cultured meat production
Considering the amount of global resources and energy consumed, and animal welfare issues associated with traditional meat production, cultured meat production has been proposed as a solution to these problems and is attracting worldwide attention. Cultured meat is produced by culturing/proliferating animal muscle cells in vitro. This process requires significant amounts of culture medium, which accounts to a major portion of the production cost. Furthermore, it is composed of nutrients derived from grains and heterotrophic microorganisms and fetal bovine serum (FBS), which will impact the sustainability of cultured meat in future. Here, we developed a novel medium containing nutrients extracted from microalga and cell-secreted growth factors. First, rat liver epithelial RL34 cells were cultured by adding Chlorella vulgaris extract (CVE) to inorganic salt solution. The supernatant, containing the RL34 cell-secreted growth factors, was used as the conditioned medium (CM). This CM, with CVE added as a nutrient source, was applied to primary bovine myoblast cultures. This serum-free and grain-derived-nutrient-free medium promoted the proliferation of bovine myoblasts, the main cell source for cultured beef. Our findings will allow us to take a major step toward reducing production costs and environmental impacts, leading to an expansion of the cultured meat market.
Dynamics of carbon substrate competition among heterotrophic microorganisms
Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Heterotrophic CO2 fixation is a significant yet underappreciated CO2 flux in environmental carbon cycling. In contrast to photosynthesis and chemolithoautotrophy – the main recognized autotrophic CO2 fixation pathways – the importance of heterotrophic CO2 fixation remains enigmatic. All heterotrophs – from microorganisms to humans – take up CO2 and incorporate it into their biomass. Depending on the availability and quality of growth substrates, and drivers such as the CO2 partial pressure, heterotrophic CO2 fixation contributes at least 1 %–5 % and in the case of methanotrophs up to 50 % of the carbon biomass. Assuming a standing stock of global heterotrophic biomass of 47–85 Pg C, we roughly estimate that up to 5 Pg C might be derived from heterotrophic CO2 fixation, and up to 12 Pg C yr−1 originating from heterotrophic CO2 fixation is funneled into the global annual heterotrophic production of 34–245 Pg C yr−1. These first estimates on the importance of heterotrophic fixation of inorganic carbon indicate that this pathway should be incorporated in present and future carbon cycling budgets.
Rhizodegradation of Petroleum Oily Sludge-contaminated Soil Using Cajanus cajan Increases the Diversity of Soil Microbial Community
Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms’ composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan , but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p  < 0.05) in microbial counts compared to other treatments. The metagenomic study focused on the POS of 3% (w/w) and based on the calculated bacterial community abundance indices showed an increase in the values for Ace, Cho, Shannon (Shannon-Weaver) and the Simpson’s (measured as InvSimpson) indices in CR3 compared to CN3. Both the Simpson’s and the Shannon values for CR3 were higher than CN3 indicating an increase in diversity upon the introduction of C. cajan into the contaminated soil. The PCoA plot revealed community-level differences between the contaminated non-rhizosphere control and contaminated rhizosphere microbiota. The PCoA differentiated the two treatments based on the presence or absence of plant. The composition and taxonomic analysis of microbiota-amplified sequences were categorized into eight phyla for the contaminated non-rhizosphere and ten phyla for the contaminated rhizosphere. The overall bacterial composition of the two treatments varied, as the distribution shows a similar variation between the two treatments in the phylum distribution. The percentage removal of total petroleum hydrocarbon (TPH) after 90 days of treatments with 1, 2, 3, 4, and 5% (w/w) of POS were 92, 90, 89, 68.3 and 47.3%, respectively, indicating removal inhibition at higher POS concentrations. As the search for more eco-friendly and sustainable remediating green plant continues, C. cajan shows great potential in reclaiming POS contaminated soil. Our findings will provide solutions to POS polluted soils and subsequent re-vegetation.
Long-Term Survival of Synechococcus and Heterotrophic Bacteria without External Nutrient Supply after Changes in Their Relationship from Antagonism to Mutualism
Phytoplankton and heterotrophic bacteria have a close but usually changeable relationship. Uncovering the dynamic changes and driving factors of their interrelationships is of great significance for an in-depth understanding of the ecological processes and functions of marine microorganisms. Marine phytoplankton and heterotrophic bacteria share a very close but usually changeable relationship. However, the ultimate fate of their unstable relationship on a long-term scale is unclear. Here, the relationship between Synechococcus and heterotrophic bacterial communities underwent a dramatic shift from antagonism to commensalism and eventually to mutualism during long-term cocultivation. The relationship change is attributed to the different (even opposite) effects of diverse bacterial members on Synechococcus and the ratio of beneficial to harmful bacteria. Different bacterial members also interact with each other (e.g., quorum-sensing communication, hostility, or mutual promotion) and drive a dynamic succession in the entire community structure that corresponds exactly to the shift in its relationship with Synechococcus . In the final mutualism stage, a self-sufficient nitrogen cycle, including nitrogen fixation, denitrification, and organic nitrogen degradation, contributed to the healthy survival of Synechococcus for 2 years without an exogenous nutrient supply. This natural selective trait of Synechococcus and heterotrophic bacteria toward mutualism under long-term coexistence provides a novel clue for understanding the ubiquity and competitive advantage of Synechococcus in global oceans. IMPORTANCE Phytoplankton and heterotrophic bacteria have a close but usually changeable relationship. Uncovering the dynamic changes and driving factors of their interrelationships is of great significance for an in-depth understanding of the ecological processes and functions of marine microorganisms. Here, we observed that Synechococcus and heterotrophic bacterial communities underwent a dramatic change in their relationship from antagonism to mutualism during a long-term cocultivation process. We revealed that the interactions between different members of the bacterial community and the combined effects of different bacterial individuals on Synechococcus promoted the dynamic changes of the Synechococcus -bacterium relationship. In the end, a self-sufficient nutrient cycle (especially nitrogen) established by Synechococcus and bacterial communities supported their long-term survival without any external nutrition supply. This study provides novel insight into the interaction between Synechococcus and heterotrophic bacteria in the ocean and provides a novel clue for understanding the ubiquity and competitive advantage of Synechococcus in global oceans.
Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts
Biological soil crusts (biocrusts) cover about 12% of the Earth’s land masses, thereby providing ecosystem services and affecting biogeochemical fluxes on a global scale. They comprise photoautotrophic cyanobacteria, algae, lichens and mosses, which grow together with heterotrophic microorganisms, forming a model system to study facilitative interactions and assembly principles in natural communities. Biocrusts can be classified into cyanobacteria-, lichen-, and bryophyte-dominated types, which reflect stages of ecological succession. In this study, we examined whether these categories include a shift in heterotrophic communities and whether this may be linked to altered physiological properties. We analyzed the microbial community composition by means of qPCR and high-throughput amplicon sequencing and utilized flux measurements to investigate their physiological properties. Our results revealed that once 16S and 18S rRNA gene copy numbers increase, fungi become more predominant and alpha diversity increases with progressing succession. Bacterial communities differed significantly between biocrust types with a shift from more generalized to specialized organisms along succession. CO 2 gas exchange measurements revealed large respiration rates of late successional crusts being significantly higher than those of initial biocrusts, and different successional stages showed distinct NO and HONO emission patterns. Thus, our study suggests that the photoautotrophic organisms facilitate specific microbial communities, which themselves strongly influence the overall physiological properties of biocrusts and hence local to global nutrient cycles.
Bacteria and microalgae associations in periphyton—mechanisms and biotechnological opportunities
Abstract Phototrophic and heterotrophic microorganisms coexist in complex and dynamic structures called periphyton. These structures shape the biogeochemistry and biodiversity of aquatic ecosystems. In particular, microalgae–bacteria interactions are a prominent focus of study by microbial ecologists and can provide biotechnological opportunities for numerous applications (i.e. microalgal bloom control, aquaculture, biorefinery, and wastewater bioremediation). In this review, we analyze the species dynamics (i.e. periphyton formation and factors determining the prevalence of one species over another), coexisting communities, exchange of resources, and communication mechanisms of periphytic microalgae and bacteria. We extend periphyton mathematical modelling as a tool to comprehend complex interactions. This review is expected to boost the applicability of microalgae–bacteria consortia, by drawing out knowledge from natural periphyton. This review considers the ecological diversity and functional drivers of periphyton, highlighting the role of microalgae and bacteria. It explores published concepts in greater detail, and distils knowledge draw knowledge from natural periphyton for that may be applied in biotechnology.
Unexpected carbon utilization activity of sulfate-reducing microorganisms in temperate and permanently cold marine sediments
Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15–30 μM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.