Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
50,636
result(s) for
"High pressure technology"
Sort by:
Industrial High Pressure Applications
2012
Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions.These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more.
Quartzlike Carbon Dioxide: An Optically Nonlinear Extended Solid at High Pressures and Temperatures
1999
An extended-solid phase, carbon dioxide phase V (CO$_z$-V), was synthesized in a diamond anvil celt by laser heating the molecular orthorhombic phase, carbon dioxide phase III, above 40 gigapascals and 1800 kelvin. This new material can be quenched to ambient temperature above 1 gigapascal. The vibration spectrum of CO$_2$-V is similar to that of the quartz polymorph of silicon dioxide, indicating that it is an extended covalent solid with carbon-oxygen single bonds. This material is also optically nonlinear, generating the second harmonic of a neodymium-yttrium-lithium-fluoride laser at a wavelength of 527 nanometers with a conversion efficiency that is near 0.1 percent.
Journal Article
X-ray Imaging of Shock Waves Generated by High-Pressure Fuel Sprays
by
Fontes, Ernest
,
Walther, Jochen
,
Schaller, Johannes
in
Aerospace Education
,
Applied sciences
,
Average linear density
2002
Synchrotron x-radiography and a fast x-ray detector were used to record the time evolution of the transient fuel sprays from a high-pressure injector. A succession of 5.1-microsecond radiographs captured the propagation of the spray-induced shock waves in a gaseous medium and revealed the complex nature of the spray hydrodynamics. The monochromatic x-radiographs also allow quantitative analysis of the shock waves that has been difficult if not impossible with optical imaging. Under injection conditions similar to those found in operating engines, the fuel jets can exceed supersonic speeds and result in gaseous shock waves.
Journal Article
Moissanite: A Window for High-Pressure Experiments
by
Xu, Ji-an
,
Mao, Ho-kwang
in
Anvils
,
Condensed matter: structure, mechanical and thermal properties
,
Crystal structure
2000
We achieved a pressure of 52.1 gigapascals with moissanite anvils, which have optical, thermal, electric, magnetic, and x-ray properties that rival those of diamond. The mode-softening of D2Otoward the pressure-induced hydrogen bond symmetrization and the Raman shifts of diamond under hydrostatic and nonhydrostatic compressions were studied with moissanite anvils in the spectral regions normally obscured by diamond anvils. Moissanite anvil cells allow maximum sample volumes 1000 times larger than those allowed by diamond anvil cells and may enable the next level of advancement in high-pressure experiments.
Journal Article
Automated technique for high-pressure water-based window cleaning and accompanying parametric study
2020
The maintenance of buildings has become an important issue with the construction of many high-rise buildings in recent years. However, the cleaning of the outer walls of buildings is performed in highly hazardous environments over long periods, and many accidents occur each year. Various robots are being studied and developed to reduce these incidents and to relieve workers from hazardous tasks. Herein, we propose a method of spraying high-pressure water using a pump and nozzle, which differs from conventional methods. The cleaning performance parameters, such as water pressure, spray angle, and spray distance, were optimized using the Taguchi method. Cleaning experiments were performed on window specimens that were contaminated artificially. The cleaning performance of the proposed method was evaluated using the image-evaluation method. The optimum condition was determined based on the results of a sensitive analysis performed on the image data. In addition, the reaction force due to high pressure and impact force on the specimens were investigated. These forces were not sufficient to affect the propeller thrust or cause damage to the building’s surface. We expect to perform field tests in the near future based on the output of this research.
Journal Article
Comprehensive Bibliometric Analysis on High Hydrostatic Pressure as New Sustainable Technology for Food Processing: Key Concepts and Research Trends
2025
The industrial application of high hydrostatic pressure (HHP) can be traced back to the late 19th century in the fields of mechanical and chemical engineering. Its growth as a food preservation technique has developed and massified in certain countries in the last 30 years. However, there is no global overview of the research conducted on this topic. The aim of this study was to recognize global trends in the scientific population on the subject of HHP over time at the main levels of analysis: sources, authors, and publications. This article provides a summary of research related to the use of HHP through a bibliometric analysis using information obtained from the Web of Science (WoS) database between the years 1975–2023, using the terms “pascalization”,“high-pressure processing”, and “high hydrostatic pressure” as input keywords. The results are shown in tables, graphs, and relationship diagrams. The countries most influential and productive in high hydrostatic pressure are the People’s R China, the USA, and Spain, with 1578, 1340, and 1003 articles, respectively. Conversely, the authors with the highest metrics are Saraiva, J. (Universidade Aveiro-Portugal), Hendrickx, M. (Katholieke Universiteit Leuven-Belgium), and Wang, T. (China Agricultural University-China). The most productive journals are Innovative Food Science & Emerging Technologies, Food Chemistry, and LWT-Food Science and Technology, all belonging to Elsevier, with 457, 281, and 264 documents, respectively. In relation to the connection between the documents under study and the United Nations Sustainable Development Goals (SDGs), most documents in the period 1975–2023 are linked to SDG 03 (good health and well-being), followed by SDG 02 (zero hunger), and SDG 07 (affordable and clean energy). Finally, the information presented in this work may give valuable key insights for those interested in the development of this interesting topic in non-thermal food preservation. Additionally, it serves as a strategic resource for stakeholders, such as food industry leaders, policymakers, and research funding bodies, by providing a clear understanding of the current state of knowledge and innovation trends. This enables informed decision-making regarding research priorities, investment opportunities, and the development of regulatory frameworks to support the adoption and advancement of non-thermal preservation technologies, ultimately contributing to safer and more sustainable food systems.
Journal Article
Food Preservation in the Industrial Revolution Epoch: Innovative High Pressure Processing (HPP, HPT) for the 21st-Century Sustainable Society
by
Rzoska, Sylwester J.
,
Sojecka, Agata Angelika
,
Drozd-Rzoska, Aleksandra
in
19th century
,
20th century
,
barocaloric effect
2024
The paper presents the ‘progressive review’ for high pressure preservation/processing (HPP) (cold pasteurization) of foods and the next-generation high-pressure and high temperature (HPHT, HPT) food sterilization technologies. It recalls the basics of HPP and HPT, showing their key features and advantages. It does not repeat detailed results regarding HPP and HPT implementations for specific foods, available in numerous excellent review papers. This report focuses on HPP and HPT-related issues that remain challenging and can hinder further progress. For HPP implementations, the reliable modeling of microorganisms’ number decay after different times of high pressure treatment or product storage is essential. This report indicates significant problems with model equations standard nonlinear fitting paradigm and introduces the distortion-sensitive routine enabling the ultimate validation. An innovative concept based on the barocaloric effect is proposed for the new generation of HPT technology. The required high temperature appears only for a strictly defined short time period controlled by the maximal pressure value. Results of the feasibility test using neopentyl glycol as the barocaloric medium are presented. Attention is also paid to feedback interactions between socioeconomic and technological issues in the ongoing Industrial Revolution epoch. It indicates economic constraints for HPP and HPT developments and emerging business possibilities. The discussion recalls the inherent feedback interactions between technological and socioeconomic innovations as the driving force for the Industrial Revolution epoch.
Journal Article
Fabrication of High-Performance Densified Wood via High-Pressure Steam Treatment and Hot-Pressing
2024
The fabrication of sustainable structural materials with high physical properties to replace engineering plastics is a major challenge for modern industry, and wood, as the most abundant sustainable natural raw material on the planet, has received a great deal of attention from researchers. Researchers have made efforts to enhance the physical properties of wood in order to replace plastics. However, it is also difficult to meet practical demands at a low cost. Herein, we report a simple and efficient top-down strategy to transform bulk natural basswood into a high-performance structural material. This three-step strategy involves partial removal of hemicellulose and lignin via treating basswood by boiling an aqueous mixture of NaOH and Na2SO3, and a high-pressure steam treatment (HPST) was applied to delignified wood followed by hot-pressing, which allowed the wood to absorb moisture uniformly and quickly. HPST-treated dense delignified wood (HDDW) has a tensile strength of ~420 MPa, which is 6.5 times better than natural basswood (~65 MPa). We systematically investigated the various factors affecting the tensile strength of this wood material and explored the reasons why these factors affect the tensile strength, as well as the intrinsic connection between the moisture absorbed through HPST and the increased tensile strength of HDDW. Through our experiments, we realized the enhancement mechanism of HDDW and the optimal experimental conditions for the fabrication of HDDW.
Journal Article
Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure
2018
The effect of high pressure thermal (HPT) treatments on the inactivation of spores of non-proteolytic type E Clostridium botulinum TMW 2.990 was investigated at high pressures (300 to 600 MPa) and elevated temperatures (80 to 100 °C) in four low-acid foods (steamed sole, green peas with ham, vegetable soup, braised veal) and imidazole phosphate buffer (IPB). In addition, corresponding conventional thermal treatments at ambient pressure were performed to expose possible synergisms of pressure and temperature on spore inactivation. In general, spore count reduction was more efficient by combining pressure and temperatures < 100 °C and the overall process duration could be shortened due to accelerated heating rates (adiabatic effect). Processing at 90 °C and 600 MPa resulted in inactivation below the detection limit after 5 min in all foods except steamed sole. Traditional thermal processing of spores at 90 °C for 10 min, on the other hand, did not result in an estimated 6-log reduction. Additional HPT treatments in steamed sole and IPB did not reveal pronounced food matrix dependent protective effects. Here, varying pressure levels did not appear to be the driving force for spore count reduction in steamed sole at any temperature. By applying a Weibull distribution on destruction kinetics of isobaric/isothermal holding times, 6D-values were calculated. Compression and decompression phase (1 s pressure holding time) had a considerable impact on spore count reduction (max. -2.9 log units) in both, foods and buffer. Hence, compression and decompression phases should directly be included into the total lethal effect of HPT treatments to avoid prolonged holding times and overprocessing.
Journal Article
Ammonothermal Crystal Growth of Functional Nitrides for Semiconductor Devices: Status and Potential
by
Wostatek, Thomas
,
Chirala, V. Y. M. Rajesh
,
Schimmel, Saskia
in
Aluminum gallium nitrides
,
Autoclaves
,
Boron nitride
2024
The state-of-the-art ammonothermal method for the growth of nitrides is reviewed here, with an emphasis on binary and ternary nitrides beyond GaN. A wide range of relevant aspects are covered, from fundamental autoclave technology, to reactivity and solubility of elements, to synthesized crystalline nitride materials and their properties. Initially, the potential of emerging and novel nitrides is discussed, motivating their synthesis in single crystal form. This is followed by a summary of our current understanding of the reactivity/solubility of species and the state-of-the-art single crystal synthesis for GaN, AlN, AlGaN, BN, InN, and, more generally, ternary and higher order nitrides. Investigation of the synthesized materials is presented, with a focus on point defects (impurities, native defects including hydrogenated vacancies) based on GaN and potential pathways for their mitigation or circumvention for achieving a wide range of controllable functional and structural material properties. Lastly, recent developments in autoclave technology are reviewed, based on GaN, with a focus on advances in development of in situ technologies, including in situ temperature measurements, optical absorption via UV/Vis spectroscopy, imaging of the solution and crystals via optical (visible, X-ray), along with use of X-ray computed tomography and diffraction. While time intensive to develop, these technologies are now capable of offering unprecedented insight into the autoclave and, hence, facilitating the rapid exploration of novel nitride synthesis using the ammonothermal method.
Journal Article