Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
85
result(s) for
"High-resolution fMRI"
Sort by:
Critical factors in achieving fine‐scale functional MRI: Removing sources of inadvertent spatial smoothing
2022
Ultra‐high Field (≥7T) functional magnetic resonance imaging (UHF‐fMRI) provides opportunities to resolve fine‐scale features of functional architecture such as cerebral cortical columns and layers, in vivo. While the nominal resolution of modern fMRI acquisitions may appear to be sufficient to resolve these features, several common data preprocessing steps can introduce unwanted spatial blurring, especially those that require interpolation of the data. These resolution losses can impede the detection of the fine‐scale features of interest. To examine quantitatively and systematically the sources of spatial resolution losses occurring during preprocessing, we used synthetic fMRI data and real fMRI data from the human visual cortex—the spatially interdigitated human V2 “thin” and “thick” stripes. The pattern of these cortical columns lies along the cortical surface and thus can be best appreciated using surface‐based fMRI analysis. We used this as a testbed for evaluating strategies that can reduce spatial blurring of fMRI data. Our results show that resolution losses can be mitigated at multiple points in preprocessing pathway. We show that unwanted blur is introduced at each step of volume transformation and surface projection, and can be ameliorated by replacing multi‐step transformations with equivalent single‐step transformations. Surprisingly, the simple approaches of volume upsampling and of cortical mesh refinement also helped to reduce resolution losses caused by interpolation. Volume upsampling also serves to improve motion estimation accuracy, which helps to reduce blur. Moreover, we demonstrate that the level of spatial blurring is nonuniform over the brain—knowledge which is critical for interpreting data in high‐resolution fMRI studies. Importantly, our study provides recommendations for reducing unwanted blurring during preprocessing as well as methods that enable quantitative comparisons between preprocessing strategies. These findings highlight several underappreciated sources of a spatial blur. Individually, the factors that contribute to spatial blur may appear to be minor, but in combination, the cumulative effects can hinder the interpretation of fine‐scale fMRI and the detectability of these fine‐scale features of functional architecture. In order to evaluate the strategies to reduce spatial resolution losses during fMRI data preprocessing for high resolution surface‐based columnar mapping, we quantified inadvertent blur using both synthetic fMRI data and real fMRI data from human visual cortex, the spatially interdigitated V2 “thin” and “thick” stripes. Results surprisingly show that the simple method of volume upsampling can effectively preserve spatial resolution, and we also highlight less well‐known sources of spatial nonuniform blur that are present during acquisition. These findings uncover several underappreciated sources of the spatial blur, which can hinder the interpretation of submillimeter fMRI and the detectability of these fine‐scale features of functional architecture.
Journal Article
Cortical depth profiles of auditory and visual 7 T functional MRI responses in human superior temporal areas
by
Lankinen, Kaisu
,
Mamashli, Fahimeh
,
Ahveninen, Jyrki
in
Acoustic Stimulation
,
Animals
,
Auditory Cortex - diagnostic imaging
2023
Invasive neurophysiological studies in nonhuman primates have shown different laminar activation profiles to auditory vs. visual stimuli in auditory cortices and adjacent polymodal areas. Means to examine the underlying feedforward vs. feedback type influences noninvasively have been limited in humans. Here, using 1‐mm isotropic resolution 3D echo‐planar imaging at 7 T, we studied the intracortical depth profiles of functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) signals to brief auditory (noise bursts) and visual (checkerboard) stimuli. BOLD percent‐signal‐changes were estimated at 11 equally spaced intracortical depths, within regions‐of‐interest encompassing auditory (Heschl's gyrus, Heschl's sulcus, planum temporale, and posterior superior temporal gyrus) and polymodal (middle and posterior superior temporal sulcus) areas. Effects of differing BOLD signal strengths for auditory and visual stimuli were controlled via normalization and statistical modeling. The BOLD depth profile shapes, modeled with quadratic regression, were significantly different for auditory vs. visual stimuli in auditory cortices, but not in polymodal areas. The different depth profiles could reflect sensory‐specific feedforward versus cross‐sensory feedback influences, previously shown in laminar recordings in nonhuman primates. The results suggest that intracortical BOLD profiles can help distinguish between feedforward and feedback type influences in the human brain. Further experimental studies are still needed to clarify how underlying signal strength influences BOLD depth profiles under different stimulus conditions. Intracortical depth profiles of the human auditory cortex were studied with 7 T functional magnetic resonance imaging. Depth profiles to auditory and visual stimulation differed in the auditory cortex. The different depth profiles could reflect feedforward vs. feedback influences.
Journal Article
Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing
by
Jangraw, David C.
,
Bandettini, Peter A.
,
Yu, Yinghua
in
Adult
,
Brain Mapping
,
Cortex (somatosensory)
2022
The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer-specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short-delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the sensory cortex contributions to flexible communication between cortical layers or between cortical areas.
[Display omitted]
Journal Article
Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data
by
Fischl, Bruce
,
Polimeni, Jonathan R.
,
Blazejewska, Anna I.
in
Adult
,
Cerebral Cortex - diagnostic imaging
,
Cerebral Cortex - physiology
2019
Continued improvement in MRI acquisition technology has made functional MRI (fMRI) with small isotropic voxel sizes down to 1 mm and below more commonly available. Although many conventional fMRI studies seek to investigate regional patterns of cortical activation for which conventional voxel sizes of 3 mm and larger provide sufficient spatial resolution, smaller voxels can help avoid contamination from adjacent white matter (WM) and cerebrospinal fluid (CSF), and thereby increase the specificity of fMRI to signal changes within the gray matter. Unfortunately, temporal signal-to-noise ratio (tSNR), a metric of fMRI sensitivity, is reduced in high-resolution acquisitions, which offsets the benefits of small voxels. Here we introduce a framework that combines small, isotropic fMRI voxels acquired at 7 T field strength with a novel anatomically-informed, surface mesh-navigated spatial smoothing that can provide both higher detection power and higher resolution than conventional voxel sizes. Our smoothing approach uses a family of intracortical surface meshes and allows for kernels of various shapes and sizes, including curved 3D kernels that adapt to and track the cortical folding pattern. Our goal is to restrict smoothing to the cortical gray matter ribbon and avoid noise contamination from CSF and signal dilution from WM via partial volume effects. We found that the intracortical kernel that maximizes tSNR does not maximize percent signal change (ΔS/S), and therefore the kernel configuration that optimizes detection power cannot be determined from tSNR considerations alone. However, several kernel configurations provided a favorable balance between boosting tSNR and ΔS/S, and allowed a 1.1-mm isotropic fMRI acquisition to have higher performance after smoothing (in terms of both detection power and spatial resolution) compared to an unsmoothed 3.0-mm isotropic fMRI acquisition. Overall, the results of this study support the strategy of acquiring voxels smaller than the cortical thickness, even for studies not requiring high spatial resolution, and smoothing them down within the cortical ribbon with a kernel of an appropriate shape to achieve the best performance—thus decoupling the choice of fMRI voxel size from the spatial resolution requirements of the particular study. The improvement of this new intracortical smoothing approach over conventional surface-based smoothing is expected to be modest for conventional resolutions, however the improvement is expected to increase with higher resolutions. This framework can also be applied to anatomically-informed intracortical smoothing of higher-resolution data (e.g. along columns and layers) in studies with prior information about the spatial structure of activation.
•We introduce an anatomically-informed intracortical spatial smoothing method.•Smoothing fMRI data while avoiding white matter and CSF has advantages.•Different smoothing kernels maximize SNR and percent signal change.•Smoothing small-voxel data can provide improved detection and comparable resolution.•This smoothing framework can also benefit laminar and columnar activation patterns.
Journal Article
The relationship between oscillatory EEG activity and the laminar-specific BOLD signal
by
Jensen, Ole
,
Scheeringa, René
,
van Mourik, Tim
in
Adolescent
,
Adult
,
Alpha Rhythm - physiology
2016
Electrophysiological recordings in animals have indicated that visual cortex γ-band oscillatory activity is predominantly observed in superficial cortical layers, whereas α- and β-band activity is stronger in deep layers. These rhythms, as well as the different cortical layers, have also been closely related to feedforward and feedback streams of information. Recently, it has become possible to measure laminar activity in humans with high-resolution functional MRI (fMRI). In this study, we investigated whether these different frequency bands show a differential relation with the laminar-resolved blood-oxygen level-dependent (BOLD) signal by combining data from simultaneously recorded EEG and fMRI from the early visual cortex. Our visual attention paradigm allowed us to investigate how variations in strength over trials and variations in the attention effect over subjects relate to each other in both modalities. We demonstrate that γ-band EEG power correlates positively with the superficial layers’ BOLD signal and that β-power is negatively correlated to deep layer BOLD and α-power to both deep and superficial layer BOLD. These results provide a neurophysiological basis for human laminar fMRI and link human EEG and high-resolution fMRI to systems-level neuroscience in animals.
Journal Article
Analysis strategies for high-resolution UHF-fMRI data
by
Zaretskaya, Natalia
,
Fischl, Bruce
,
Polimeni, Jonathan R.
in
Anatomically-informed analysis
,
Brain
,
Brain - diagnostic imaging
2018
Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential.
•Ultra-high field strengths provide increased sensitivity and specificity for fMRI.•High-resolution fMRI data enables new analysis strategies and challenges.•Advanced preprocessing strategies can help preserve fMRI resolution.•Small-voxels enabled intracortical analyses for laminar and columnar fMRI.
Journal Article
A critical assessment of data quality and venous effects in sub-millimeter fMRI
2019
Advances in hardware, pulse sequences, and reconstruction techniques have made it possible to perform functional magnetic resonance imaging (fMRI) at sub-millimeter resolution while maintaining high spatial coverage and acceptable signal-to-noise ratio. Here, we examine whether sub-millimeter fMRI can be used as a routine method for obtaining accurate measurements of fine-scale local neural activity. We conducted fMRI in human visual cortex during a simple event-related visual experiment (7 T, gradient-echo EPI, 0.8-mm isotropic voxels, 2.2-s sampling rate, 84 slices), and developed analysis and visualization tools to assess the quality of the data. Our results fall along three lines of inquiry. First, we find that the acquired fMRI images, combined with appropriate surface-based processing, provide reliable and accurate measurements of fine-scale blood oxygenation level dependent (BOLD) activity patterns. Second, we show that the highly folded structure of cortex causes substantial biases on spatial resolution and data visualization. Third, we examine the well-recognized issue of venous contributions to fMRI signals. In a systematic assessment of large sections of cortex measured at a fine scale, we show that time-averaged T2*-weighted EPI intensity is a simple, robust marker of venous effects. These venous effects are unevenly distributed across cortex, are more pronounced in gyri and outer cortical depths, and are, to a certain degree, in consistent locations across subjects relative to cortical folding. Furthermore, we show that these venous effects are strongly correlated with BOLD responses evoked by the experiment. We conclude that sub-millimeter fMRI can provide robust information about fine-scale BOLD activity patterns, but special care must be exercised in visualizing and interpreting these patterns, especially with regards to the confounding influence of the brain's vasculature. To help translate these methodological findings to neuroscience research, we provide practical suggestions for both high-resolution and standard-resolution fMRI studies.
Journal Article
Integrated VASO and perfusion contrast: A new tool for laminar functional MRI
2020
Earlier research in cats has shown that both cerebral blood volume (CBV) and cerebral blood flow (CBF) can be used to identify layer-dependent fMRI activation with spatial specificity superior to gradient-echo blood-oxygen-level-dependent (BOLD) contrast (Jin and Kim, 2008a). CBF contrast of perfusion fMRI at ultra-high field has not been widely applied in humans to measure laminar activity due to its low sensitivity, while CBV contrast for fMRI using vascular space occupancy (VASO) has been successfully used. However, VASO can be compromised by interference of blood in-flow effects and a temporally limited acquisition window around the blood-nulling time point. Here, we proposed to use DANTE (Delay Alternating with Nutation for Tailored Excitation) pulse trains combined with 3D-EPI to acquire an integrated VASO and perfusion (VAPER) contrast. The signal origin of the VAPER contrast was theoretically evaluated with respect to its CBV and CBF contributions using a four-compartment simulation model. The feasibility of VAPER to measure layer-dependent activity was empirically investigated in human primary motor cortex at 7 T. We demonstrated this new tool, with its highly specified functional layer profile, robust reproducibility, and improved sensitivity, to allow investigation of layer-specific cortical functions.
Journal Article
Line scanning fMRI reveals earlier onset of optogenetically evoked BOLD response in rat somatosensory cortex as compared to sensory stimulation
by
Faber, Cornelius
,
Schmid, Florian
,
Albers, Franziska
in
Artefacts
,
BOLD latency
,
Brain mapping
2018
The combination of optogenetic control and fMRI readout in the brain is increasingly used to assess neuronal networks and underlying signal processing. However, how exactly optogenetic activation or inhibition reproduces normal physiological input has not been fully unraveled. To assess details of temporal dynamics of the hemodynamic response, temporal resolution in rodent fMRI is often not sufficient. Recent advances in human fMRI using faster acquisition schemes cannot be easily translated to small animals due to smaller dimensions, fast physiological motion, and higher sensitivity to artefacts. Here, we applied a one dimensional line scanning acquisition with 50ms temporal resolution in rat somatosensory cortex. We observed that optogenetic activation reproduces the hemodynamic response upon sensory stimulation, but shows a 160 to 340ms earlier onset of the response. This difference is explained by direct activation of all opsin-expressing and illuminated cortical layers, while hemodynamic response to sensory stimulation is delayed during intracortical transmission between cortical layers. Our results confirm that optogenetic activation is a valid model for physiological neuronal input, and that differences in temporal behavior of only a few hundred milliseconds can be resolved in rodent fMRI.
[Display omitted]
Journal Article
habenula encodes negative motivational value associated with primary punishment in humans
2014
Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.
Journal Article