Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
323 result(s) for "Higher Spin Gravity"
Sort by:
Higher-spin self-dual General Relativity: 6d and 4d pictures, covariant vs. lightcone
A bstract We study the higher-spin extension of self-dual General Relativity (GR) with cosmological constant, proposed by Krasnov, Skvortsov and Tran. We show that this theory is actually a gauge-fixing of a 6d diffeomorphism-invariant Abelian theory, living on (4d spacetime)×(2d spinor space) modulo a finite group. On the other hand, we point out that the theory respects the 4d geometry of a self-dual GR solution, with no backreaction from the higher-spin fields. We also present a lightcone ansatz that reduces the covariant fields to one scalar field for each helicity. The field equations governing these scalars have only cubic vertices. We compare our lightcone ansatz to Metsaev’s lightcone formalism. We conclude with a new perspective on the lightcone formalism in (A)dS spacetime: not merely a complication of its Minkowski-space cousin, it has a built-in Lorentz covariance, and is closely related to Vasiliev’s concept of unfolding.
Off-shell higher-spin fields in AdS 4 and external currents
Abstract We construct an unfolded system for off-shell fields of arbitrary integer spin in 4d anti-de Sitter space. To this end we couple an on-shell system, encoding Fronsdal equations, to external Fronsdal currents for which we find an unfolded formulation. We present a reduction of the Fronsdal current system which brings it to the unfolded Fierz-Pauli system describing massive fields of arbitrary integer spin. Reformulating off-shell higher-spin system as the set of Schwinger–Dyson equations we compute propagators of higher-spin fields in the de Donder gauge directly from the unfolded equations. We discover operators that significantly simplify this computation, allowing a straightforward extraction of wave equations from an unfolded system.
Scattering amplitudes for all masses and spins
A bstract We introduce a formalism for describing four-dimensional scattering amplitudes for particles of any mass and spin. This naturally extends the familiar spinor-helicity formalism for massless particles to one where these variables carry an extra SU (2) little group index for massive particles, with the amplitudes for spin S particles transforming as symmetric rank 2 S tensors. We systematically characterise all possible three particle amplitudes compatible with Poincare symmetry. Unitarity, in the form of consistent factorization, imposes algebraic conditions that can be used to construct all possible four-particle tree amplitudes. This also gives us a convenient basis in which to expand all possible four-particle amplitudes in terms of what can be called “spinning polynomials”. Many general results of quantum field theory follow the analysis of four-particle scattering, ranging from the set of all possible consistent theories for massless particles, to spin-statistics, and the Weinberg-Witten theorem. We also find a transparent understanding for why massive particles of sufficiently high spin cannot be “elementary”. The Higgs and Super-Higgs mechanisms are naturally discovered as an infrared unification of many disparate helicity amplitudes into a smaller number of massive amplitudes, with a simple understanding for why this can’t be extended to Higgsing for gravitons. We illustrate a number of applications of the formalism at one-loop, giving few-line computations of the electron ( g − 2) as well as the beta function and rational terms in QCD. “Off-shell” observables like correlation functions and form-factors can be thought of as scattering amplitudes with external “probe” particles of general mass and spin, so all these objects — amplitudes, form factors and correlators, can be studied from a common on-shell perspective.
Higher Spin Matrix Models
We propose a hybrid class of theories for higher spin gravity and matrix models, i.e., which handle simultaneously higher spin gravity fields and matrix models. The construction is similar to Vasiliev’s higher spin gravity, but part of the equations of motion are provided by the action principle of a matrix model. In particular, we construct a higher spin (gravity) matrix model related to type IIB matrix models/string theory that have a well defined classical limit, and which is compatible with higher spin gravity in A d S space. As it has been suggested that higher spin gravity should be related to string theory in a high energy (tensionless) regime, and, therefore to M-Theory, we expect that our construction will be useful to explore concrete connections.
Actions for self-dual Higher Spin Gravities
A bstract Higher Spin Gravities are scarce, but covariant actions for them are even scarcer. We construct covariant actions for contractions of Chiral Higher Spin Gravity that represent higher spin extensions of self-dual Yang-Mills and self-dual Gravity theories. The actions give examples of complete higher spin theories both in flat and (anti)-de Sitter spaces that feature gauge and gravitational interactions. The actions are based on a new description of higher spin fields, whose origin can be traced to early works on twistor theory. The new description simplifies the structure of interactions. In particular, we find a covariant form of the minimal gravitational interaction for higher spin fields both in flat and anti-de Sitter space, which resolves some of the puzzles in the literature.
New conformal higher spin gravities in 3d
A bstract We propose a new class of conformal higher spin gravities in three dimensions, which extends the one by Pope and Townsend. The main new feature is that there are infinitely many examples of the new theories with a finite number of higher spin fields, much as in the massless case. The action has the Chern-Simons form for a higher spin extension of the conformal algebra. In general, the new theories contain Fradkin-Tseytlin fields with higher derivatives in the gauge transformations, which is reminiscent of partially-massless fields. A relation of the old and new theories to the parity anomaly is pointed out.
From Moyal deformations to chiral higher-spin theories and to celestial algebras
A bstract We study the connection of Moyal deformations of self-dual gravity and self-dual Yang-Mills theory to chiral higher-spin theories, and also to deformations of operator algebras in celestial holography. The relation to Moyal deformations illuminates various aspects of the structure of chiral higher-spin theories. For instance, the appearance of the self-dual kinematic algebra in all the theories considered here leads via the double copy to vanishing tree-level scattering amplitudes. Regarding celestial holography, the Moyal deformation of self-dual gravity was recently shown to lead to the loop algebra of W ∧ , and we obtain here the analogous deformation of a Kac-Moody algebra corresponding to Moyal-deformed self-dual Yang-Mills theory. We also introduce the celestial algebras for various chiral higher-spin theories.
On (spinor)-helicity and bosonization in AdS 4/CFT 3
Abstract Helicity is a useful concept both for AdS4 and CFT3 studies. We work out the complete AdS4/CFT3 dictionary for spinning fields/operators in the spinor-helicity base that allows one to scalarize any n-point contact vertex. AdS4-vertices encode correlation functions of conserved currents, stress-tensor and, more generally, higher spin currents in a simple way. We work out the dictionary for Yang-Mills- and gravity-type theories with higher derivative corrections as well as some higher spin examples and exemplify the relation to the three-dimensional bosonization duality. The bosonization can be understood as a simple surgery: vertices/correlators are built via an EM-duality transformation by sewing together (anti)-Chiral higher spin gravities, to whose existence the three-dimensional bosonization duality can be attributed (up to the proof of uniqueness).
CFT duals of three-dimensional de Sitter gravity
A bstract We present a class of dS/CFT correspondence between two-dimensional CFTs and three-dimensional de Sitter spaces. We argue that such a CFT includes an SU(2) WZW model in the critical level limit k → − 2, which corresponds to the classical gravity limit. We can generalize this dS/CFT by considering the SU( N ) WZW model in the critical level limit k → −N , dual to the higher-spin gravity on a three-dimensional de Sitter space. We confirm that under this proposed duality the classical partition function in the gravity side can be reproduced from CFT calculations. We also point out a duality relation known in higher-spin holography provides further evidence. Moreover, we analyze two-point functions and entanglement entropy in our dS/CFT correspondence. Possible spectrum and quantum corrections in the gravity theory are discussed.
Scattering in black hole backgrounds and higher-spin amplitudes. Part I
A bstract The scattering of massless waves of helicity ∣ h ∣ = 0 , 1 2 , 1 in Schwarzschild and Kerr backgrounds is revisited in the long-wavelength regime. Using a novel description of such backgrounds in terms of gravitating massive particles, we compute classical wave scattering in terms of 2 → 2 QFT amplitudes in flat space, to all orders in spin. The results are Newman-Penrose amplitudes which are in direct correspondence with solutions of the Regge-Wheeler/Teukolsky equation. By introducing a precise prescription for the point-particle limit, in Part I of this work we show how both agree for h = 0 at finite values of the scattering angle and arbitrary spin orientation. Associated classical observables such as the scattering cross sections, wave polarizations and time delay are studied at all orders in spin. The effect of the spin of the black hole on the polarization and helicity of the waves is found in agreement with previous analysis at linear order in spin. In the particular limit of small scattering angle, we argue that wave scattering admits a universal, point-particle description determined by the eikonal approximation. We show how our results recover the scattering eikonal phase with spin up to second post-Minkowskian order, and match it to the effective action of null geodesics in a Kerr background. Using this correspondence we derive classical observables such as polar and equatorial scattering angles. This study serves as a preceding analysis to Part II, where the Gravitational Wave ( h = 2) case will be studied in detail.