Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Hippotragus equinus"
Sort by:
Spatial distribution of snares in Ruma National Park, Kenya, with implications for management of the roan antelope Hippotragus equinus langheldi and other wildlife
Poaching with snares has been identified as the main cause of decline of the endemic roan antelope Hippotragus equinus langheldi in Ruma National Park, Kenya, from > 200 in 1979 to 37 in 2009. However, the spatial snaring patterns in the Park are not clearly understood. The focus of our study was to map the spatial distribution of snares in the Park and to identify the factors influencing this distribution, to develop effective methods of wildlife protection. Using data collected from 56 sample plots during 2006–2008, coupled with geographical information system techniques, we investigated the association between the occurrence of snares and the distribution of geographical features (slope, elevation), infrastructure (roads, fences), essential resources for wildlife (water, salt licks, forage), roan locations and wildlife density. Ripley's L function for assessing complete spatial randomness indicated that snares occurred in clumps (hotspots) up to 4 km apart. Negative binomial regression indicated that these hotspots occurred (1) near water resources, salt licks and the Park boundary, (2) far from roan locations and Park roads, (3) in areas with low gradients and low wildlife density, and (4) in areas with burned vegetation. We recommend concentrating routine security patrol efforts and resources on snare hotspots to reduce snaring and to protect the roan antelope and other threatened wildlife.
The Status of Wildlife in Protected Areas Compared to Non-Protected Areas of Kenya
We compile over 270 wildlife counts of Kenya's wildlife populations conducted over the last 30 years to compare trends in national parks and reserves with adjacent ecosystems and country-wide trends. The study shows the importance of discriminating human-induced changes from natural population oscillations related to rainfall and ecological factors. National park and reserve populations have declined sharply over the last 30 years, at a rate similar to non-protected areas and country-wide trends. The protected area losses reflect in part their poor coverage of seasonal ungulate migrations. The losses vary among parks. The largest parks, Tsavo East, Tsavo West and Meru, account for a disproportionate share of the losses due to habitat change and the difficulty of protecting large remote parks. The losses in Kenya's parks add to growing evidence for wildlife declines inside as well as outside African parks. The losses point to the need to quantify the performance of conservation policies and promote integrated landscape practices that combine parks with private and community-based measures.
Diversity and habitat association of medium- and large-sized mammals in Kafta-Sheraro Biosphere, northern Ethiopia
Understanding species diversity and habitat associations is essential for developing effective wildlife management and conservation strategies. This study assessed the diversity, abundance, and habitat preferences of medium- and large-sized mammals in Kafta-Sheraro National Park. The study was conducted from March to August 2019, covering both wet and dry seasons. The park was stratified into four major habitat types; bushland, grassland, riverine forest, and woodland, based on vegetation characteristics, and permanent transects were established using systematic sampling. Mammals were identified and counted along the transects, and the data were analyzed using Python, PAST, and ArcGIS. A total of 11,054 individuals representing 28 mammal species were recorded. Six of these species are globally threatened: the endangered African elephant (Loxodonta africana), the vulnerable leopard (Panthera pardus), cheetah (Acinonyx jubatus), roan antelope (Hippotragus equinus), red-fronted gazelle (Eudorcas rufifrons), and the near-threatened striped hyena (Hyaena hyaena). Species richness varied significantly in riverine forest and woodland habitats (p ≤ 0.05). The grivet monkey (Cercopithecus aethiops) and anubis baboon (Papio anubis) together accounted for 47.68% of the total population. In contrast, P. pardus, A. jubatus, Orycteropus afer, Civettictis civetta, and Hystrix cristata were the least abundant (< 1%). Bushland supported the highest mammal population (3,111 ± 87.18), followed by grassland (2,917 ± 75.71), riverine forest (2,632 ± 88.03), and woodland (2,394 ± 93.62). The dry season yielded the highest species diversity in bushland (H’ = 2.58), while woodland had the lowest (H’ = 2.03). Grassland showed the highest evenness in the wet season (J = 0.54). Continued research and conservation efforts are vital to sustaining Kafta-Sheraro National Park’s biodiversity and supporting the livelihoods of nearby communities.
Evidence for a Novel Gammaherpesvirus as the Putative Agent of Malignant Catarrhal Fever Disease in Roan Antelopes (Hippotragus equinus)
Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species. It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1) at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.
Reproductive events and respective faecal androgen metabolite concentrations in captive male roan antelope (Hippotragus equinus)
Understanding the reproductive biology of the roan antelope (Hippotragus equinus) (É. Geoffroy Saint-Hilaire, 1803) is crucial to optimise breeding success in captive breeding programmes of this threatened species. In this study, the pattern of faecal androgen metabolite (fAM) production related to reproductive events (calving or birthing, mating, gestation, and lactation), sexual behaviours as well as environmental cues were studied in captive adult male roan antelope. Faecal sample collection and behavioural observations were carried out from August 2017 to July 2018 for three reproductive males participating in a conservation breeding programme at the Lapalala Wilderness Nature Reserve in South Africa. As a prerequisite, the enzyme immunoassay used in this study was biologically validated for the species by demonstrating a significant difference between fAM concentrations in non-breeding adults, breeding adults and juvenile males. Results revealed that in adults males, the overall mean fAM levels were 73% higher during the breeding period compared to the non-breeding periods, and 85% higher when exclusively compared to the lactation/gestation periods, but only 5.3% higher when compared to the birthing period. Simultaneously, fAM concentrations were lower during the wet season compared to the dry season, increasing with a reduction in photoperiod. With the exception of courtship, frequencies of sexual behaviours monitored changed in accordance with individual mean fAM concentrations in male roan antelope, the findings suggest that androgen production varies with the occurrence of mating activity and may be influenced by photoperiod but not with rainfall.
De novo whole-genome assembly and resequencing resources for the roan (Hippotragus equinus), an iconic African antelope
Roan antelope (Hippotragus equinus) is the second-largest member of the Hippotraginae (Bovidae), and is widely distributed across sub-Saharan mesic woodlands. Despite being listed as \"Least Concern\" across its African range, population numbers are decreasing with many regional Red List statuses varying between Endangered and Locally Extinct. Although the roan antelope has become an economically-important game species in Southern Africa, the vast majority of wild populations are found only in fragmented protected areas, which is of conservation concern. Genomic information is crucial in devising optimal management plans. To this end, we report here the first de novo assembly and annotation of the whole-genome sequence of a male roan antelope from a captive-breeding program. Additionally, we uncover single-nucleotide variants (SNVs) through re-sequencing of five wild individuals representing five of the six described subspecies. We used 10X Genomics Chromium chemistry to produce a draft genome of 2.56 Gb consisting of 16,880 scaffolds with N50 = 8.42 Mb and a BUSCO completeness of 91.2%. The draft roan genome includes 1.1 Gbp (42.2%) repetitive sequences. De novo annotation identified 20,518 protein-coding genes. Genome synteny to the domestic cow showed an average identity of 92.7%. Re-sequencing of five wild individuals to an average sequencing depth of 9.8x resulted in the identification of a filtered set of 3.4x106 bi-allelic SNVs. The proportion of alternative homozygous SNVs for the individuals representing different subspecies, as well as differentiation as measured by PCA, were consistent with expected divergence from the reference genome and among samples. The roan antelope genome is a valuable resource for evolutionary and population genomic questions, as well as management and conservation actions.
Implications of Ecological Drivers on Roan Antelope Populations in Mokala National Park, South Africa
Climate change has massive global impacts and affects a wide range of species. Threatened species such as the roan antelope (Hippotragus equinus) are particularly vulnerable to these changes because of their ecological requirements. Attempts to address concerns about the roan’s vulnerability have not been well documented in South African protected areas. This study identifies the landscape use and distribution of the roan as well as habitat and forage suitability changes to help inform management decisions for the conservation of roan. We used fine- and broad-scale data from Mokala National Park, South Africa that includes roan occurrence data, vegetation condition indices, vegetation (structure and plant species composition), elevation and temperature differences, and precipitation strata to construct a suitability framework using the Maximum Entropy (Maxent) and Random Forest statistical package. In Mokala National Park, roan occurred in the Schmidtia pappophoroides–Vachellia erioloba sparse woodland, Senegalia mellifera–Vachellia erioloba closed woodland, Senegalia mellifera–Vachellia tortilis open shrubland, Vachellia erioloba–V. tortilis closed woodland and Rhigozum obovatum–Senegalia mellifera open shrubland. The veld (vegetation) condition index (VCI) improved from 2019 (VCI < 50%) to 2021 (VCI > 60%), with the proportion of palatable grass species (Schmidtia pappophoroides and Eragrostis lehmanniana) also increasing. This study identified four key climatic conditions affecting roan distribution, namely annual mean daily temperature range, temperature seasonality, minimum temperatures of the coldest month, and precipitation of the wettest month. These results suggest that the conservation of roan antelope should consider these key variables that affect their survival in preferred habitats and foraging areas in anticipation of changing ecological conditions.
Assessing introgressive hybridization in roan antelope (Hippotragus equinus): Lessons from South Africa
Biological diversity is being lost at unprecedented rates, with genetic admixture and introgression presenting major threats to biodiversity. Our ability to accurately identify introgression is critical to manage species, obtain insights into evolutionary processes, and ultimately contribute to the Aichi Targets developed under the Convention on Biological Diversity. The current study concerns roan antelope, the second largest antelope in Africa. Despite their large size, these antelope are sensitive to habitat disturbance and interspecific competition, leading to the species being listed as Least Concern but with decreasing population trends, and as extinct over parts of its range. Molecular research identified the presence of two evolutionary significant units across their sub-Saharan range, corresponding to a West African lineage and a second larger group which includes animals from East, Central and Southern Africa. Within South Africa, one of the remaining bastions with increasing population sizes, there are a number of West African roan antelope populations on private farms, and concerns are that these animals hybridize with roan that naturally occur in the southern African region. We used a suite of 27 microsatellite markers to conduct admixture analysis. Our results indicate evidence of hybridization, with our developed tests using a simulated dataset being able to accurately identify F1, F2 and non-admixed individuals at threshold values of qi > 0.80 and qi > 0.85. However, further backcrosses were not always detectable with backcrossed-Western roan individuals (46.7-60%), backcrossed-East, Central and Southern African roan individuals (28.3-45%) and double backcrossed (83.3-98.3%) being incorrectly classified as non-admixed. Our study is the first to confirm ongoing hybridization in this within this iconic African antelope, and we provide recommendations for the future conservation and management of this species.
Clinical Coxiella burnetii infection in sable and roan antelope in South Africa
Various zoonotic microorganisms cause reproductive problems such as abortions and stillbirths, leading to economic losses on farms, particularly within livestock. In South Africa, bovine brucellosis is endemic in cattle, and from 2013-2018, outbreaks of Brucella melitensis occurred in sable. Coxiella burnetii, the agent responsible for the zoonotic disease known as Q-fever and/or coxiellosis, also causes reproductive problems and infects multiple domestic animal species worldwide, including humans. However, little is known of this disease in wildlife. With the expansion of the wildlife industry in South Africa, diseases like brucellosis and coxiellosis can significantly impact herd breeding success because of challenges in identifying, managing and treating diseases in wildlife populations. This study investigated samples obtained from aborted sable and roan antelope, initially suspected to be brucellosis, from game farms in South Africa using serology tests and ruminant VetMAX™ polymerase chain reaction (PCR) abortion kit. The presence of C. burnetii was confirmed with PCR in a sable abortion case, while samples from both sable and roan were seropositive for C. burnetii indirect enzyme-linked immunosorbent assay (iELISA). This study represents the initial report of C. burnetii infection in sable and roan antelope in South Africa. Epidemiological investigations are crucial to assess the risk of C. burnetii in sable and roan populations, as well as wildlife and livestock in general, across South Africa. This is important in intensive farming practices, particularly as Q-fever, being a zoonotic disease, poses a particular threat to the health of veterinarians and farm workers as well as domestic animals.Contribution: A report of clinical C. burnetii infection in the wildlife industry contributes towards the limited knowledge of this zoonotic disease in South Africa.
Provisioning of Game Meat to Rural Communities as a Benefit of Sport Hunting in Zambia
Sport hunting has reportedly multiple benefits to economies and local communities; however, few of these benefits have been quantified. As part of their lease agreements with the Zambia Wildlife Authority, sport hunting operators in Zambia are required to provide annually to local communities free of charge i.e., provision a percentage of the meat obtained through sport hunting. We characterized provisioning of game meat to rural communities by the sport hunting industry in Zambia for three game management areas (GMAs) during 2004-2011. Rural communities located within GMAs where sport hunting occurred received on average > 6,000 kgs per GMA of fresh game meat annually from hunting operators. To assess hunting industry compliance, we also compared the amount of meat expected as per the lease agreements versus observed amounts of meat provisioned from three GMAs during 2007-2009. In seven of eight annual comparisons of these GMAs, provisioning of meat exceeded what was required in the lease agreements. Provisioning occurred throughout the hunting season and peaked during the end of the dry season (September-October) coincident with when rural Zambians are most likely to encounter food shortages. We extrapolated our results across all GMAs and estimated 129,771 kgs of fresh game meat provisioned annually by the sport hunting industry to rural communities in Zambia at an approximate value for the meat alone of >US$600,000 exclusive of distribution costs. During the hunting moratorium (2013-2014), this supply of meat has halted, likely adversely affecting rural communities previously reliant on this food source. Proposed alternatives to sport hunting should consider protein provisioning in addition to other benefits (e.g., employment, community pledges, anti-poaching funds) that rural Zambian communities receive from the sport hunting industry.