Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
262
result(s) for
"Histocompatibility Antigens Class I - classification"
Sort by:
Unraveling the Evolution of the Atlantic Cod’s (Gadus morhua L.) Alternative Immune Strategy
by
Gregers, Tone F.
,
Malmstrøm, Martin
,
Jakobsen, Kjetill S.
in
Adaptive radiation
,
Adaptive systems
,
Amino Acid Sequence
2013
Genes encoding the major histocompatibility complex (MHC) have been thought to play a vital role in the adaptive immune system in all vertebrates. The discovery that Atlantic cod (Gadus morhua) has lost important components of the MHC II pathway, accompanied by an unusually high number of MHC I genes, shed new light on the evolution and plasticity of the immune system of teleosts as well as in higher vertebrates. The overall aim of this study was to further investigate the highly expanded repertoire of MHC I genes using a cDNA approach to obtain sequence information of both the binding domains and the sorting signaling potential in the cytoplasmic tail. Here we report a novel combination of two endosomal sorting motifs, one tyrosine-based associated with exogenous peptide presentation by cross-presenting MHCI molecules, and one dileucine-based associated with normal MHC II functionality. The two signal motifs were identified in the cytoplasmic tail in a subset of the genes. This indicates that these genes have evolved MHC II-like functionality, allowing a more versatile use of MHC I through cross-presentation. Such an alternative immune strategy may have arisen through adaptive radiation and acquisition of new gene function as a response to changes in the habitat of its ancestral lineage.
Journal Article
Definition of supertypes for HLA molecules using clustering of specificity matrices
by
Lamberth, Kasper
,
R der, Gustav
,
Kesmir, Can
in
Amino Acid Motifs
,
Cluster Analysis
,
Histocompatibility Antigens Class I - classification
2004
Major histocompatibility complex (MHC) proteins are encoded by extremely polymorphic genes and play a crucial role in immunity. However, not all genetically different MHC molecules are functionally different. Sette and Sidney (1999) have defined nine HLA class I supertypes and showed that with only nine main functional binding specificities it is possible to cover the binding properties of almost all known HLA class I molecules. Here we present a comprehensive study of the functional relationship between all HLA molecules with known specificities in a uniform and automated way. We have developed a novel method for clustering sequence motifs. We construct hidden Markov models for HLA class I molecules using a Gibbs sampling procedure and use the similarities among these to define clusters of specificities. These clusters are extensions of the previously suggested ones. We suggest splitting some of the alleles in the A1 supertype into a new A26 supertype, and some of the alleles in the B27 supertype into a new B39 supertype. Furthermore the B8 alleles may define their own supertype. We also use the published specificities for a number of HLA-DR types to define clusters with similar specificities. We report that the previously observed specificities of these class II molecules can be clustered into nine classes, which only partly correspond to the serological classification. We show that classification of HLA molecules may be done in a uniform and automated way. The definition of clusters allows for selection of representative HLA molecules that can cover the HLA specificity space better. This makes it possible to target most of the known HLA alleles with known specificities using only a few peptides, and may be used in construction of vaccines. Supplementary material is available at http://www.cbs.dtu.dk/researchgroups/immunology/supertypes.html.
Journal Article
In vivo detection of antigen-specific CD8+ T cells by immuno-positron emission tomography
by
Woodham, Andrew W.
,
Chaparro, Rodolfo J.
,
Garforth, Scott J.
in
631/1647/245/2092
,
631/1647/334/1874/345
,
631/250/21
2020
The immune system’s ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8
+
T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8
+
T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus–specific CD8
+
T cells in the lungs of influenza A virus–infected mice. It is thus possible to visualize antigen-specific CD8
+
T-cell populations in vivo, which may serve prognostic and diagnostic roles.
Antigen-specific CD8
+
T cells can be imaged by immunoPET with the help of synTacs, MHC-based tools that bind to relevant T-cell receptors.
Journal Article
Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution
by
Andrade, Jorge
,
Kettleborough, Ross N.
,
Hernandez, Kyle M.
in
Animals
,
Antigen Presentation
,
Antigens
2016
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates.
Journal Article
Structural Basis for Recognition of the Nonclassical MHC Molecule HLA-G by the Leukocyte Ig-Like Receptor B2 (LILRB2/LIR2/ILT4/CD85d)
by
Shiroishi, Mitsunori
,
Kuroki, Kimiko
,
Kohda, Daisuke
in
Amino acids
,
Antigens, CD - chemistry
,
Antigens, CD - immunology
2006
HLA-G is a nonclassical MHC class I (MHCI) molecule that can suppress a wide range of immune responses in the maternal-fetal interface. The human inhibitory immune receptors leukocyte Iglike receptor (LILR) B1 [also called LIR1, Ig-like transcript 2 (ILT2), or CD85j] and LILRB2 (LIR2/ILT4/CD85d) preferentially recognize HLA-G. HLA-G inherently exhibits various forms, including β₂microglobulin (β₂m)-free and disulfide-linked dimer forms. Notably, LILRB1 cannot recognize the β₂m-free form of HLA-G or HLA-B27, but LILRB2 can recognize the β₂m-free form of HLA-B27. To date, the structural basis for HLA-G/LILR recognition remains to be examined. Here, we report the 2.5-Å resolution crystal structure of the LILRB2/HLA-G complex. LILRB2 exhibits an overlapping but distinct MHCI recognition mode compared with LILRB1 and dominantly recognizes the hydrophobic site of the HLA-G α3 domain. NMR binding studies also confirmed these LILR recognition differences on both conformed (heavy chain/peptide/β₂m) and free forms of β₂m. Binding studies using β₂m-free MHCIs revealed differential β₂m-dependent LILR-binding specificities. These results suggest that subtle structural differences between LILRB family members cause the distinct binding specificities to various forms of HLA-G and other MHCIs, which may in turn regulate immune suppression.
Journal Article
Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus
by
Miller, Hilary C
,
Marshall-Graves, Jennifer A
,
Edwards, Scott
in
Artificial chromosomes
,
Cloning
,
Genes
2015
Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general.
Journal Article
Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors
2017
Accurate human leukocyte antigen (HLA) genotyping is critical in studies involving the immune system. Several algorithms to estimate HLA genotypes from whole-exome data were developed. We compared the accuracy of seven algorithms, including Optitype, Polysolver and PHLAT, as well as investigated patterns and possible causes of miscalls using 12 clinical samples and 961 individuals from the 1000 Genomes Project. Optitype showed the highest accuracy of 97.2% for HLA class I alleles at the second field resolution, followed by 94.0% in Polysolver and 85.6% in PHLAT. In Optitype, 34 (21.1%) of 161 miscalls were across different serological types, and common miscalls were HLA-A*26:01 to HLA-A*25:01, HLA-B*45:01 to HLA-B*44:15 and HLA-C*08:02 to HLA-C*05:01 with error rates of 4.1%, 10.0% and 4.1%, respectively. In Polysolver, 193 (55.9%) of 345 miscalls occurred across different serological alleles, and a specific pattern of genotyping error from HLA-A*25:01 to HLA-A*26:01 was observed in 93.3% of HLA-A*25:01 carriers, due to dropping of HLA-A*25:01 sequence reads during the extraction process of HLA reads. In PHLAT, 147 (59.8%) of 246 miscalls in HLA-A were due to erroneous assignment of multiple alleles to either HLA-A*01:22 or HLA-A*01:81. These results suggest that careful considerations needed to be taken when using exome-based HLA class I genotyping data and applying these results in clinical settings.
Journal Article
Extent of Cytomegalovirus Replication in the Human Host Depends on Variations of the HLA-E/UL40 Axis
2021
Infection with human cytomegalovirus (HCMV) is associated with substantial morbidity in immunosuppressed patients and after congenital infections. Therefore, development of a vaccine against HCMV is a main public health priority. Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). In response to HCMV infections, a subset of NKG2C + NK cells expands, which limits HCMV replication and is characterized by high expression of the activating NKG2C/CD94 and absence of the inhibitory NKG2A/CD94 receptor. Both receptors bind to HLA-E, which is stabilized by HCMV-encoded UL40 peptides. HLA-E and UL40 occur as different genetic variants. In this study, we investigated the interplay between the human NK cell response and the infecting HCMV-UL40 strain, and we assessed the impact of HCMV-UL40 and of donor- and recipient-encoded HLA-E*0101/0103 variants on HCMV replication after lung transplantation. We included 137 LTRs displaying either no or low- or high-level (>1,000 copies/ml plasma) viremia. HCMV-UL40 and HLA-E*0101/0103 variants were determined. UL40 diversity was investigated by next-generation sequencing. UL40 peptide-dependent NK cell cytotoxicity was assessed by flow cytometry. Donor-encoded HLA-E*0101/0103 was significantly associated with development of high-level viremia after transplantation ( P = 0.007). The HCMV-UL40 variant VMAPRTLIL occurred significantly more frequently in highly viremic LTRs, and the variant VMTPRTLIL occurred significantly more frequently in low-viremic LTRs ( P = 0.004). This difference was associated with a better inhibition of NKG2A + NKG2C − NK cells by VMAPRTLIL ( P < 0.001). In LTRs with repeated high-level viremic episodes, HCMV strains with UL40 variants displaying low affinity to the patients’ HLA-E variant emerged over time. The HLA-E-UL40 axis has a substantial impact on the level of HCMV replication in LTRs. The interplay between UL40 peptide variants, the recipient HLA-E status, and the activation of inhibitory NKG2A + NKG2C − cells is of major importance for development of high-level viremia after lung transplantation. IMPORTANCE Infection with human cytomegalovirus (HCMV) is associated with substantial morbidity in immunosuppressed patients and after congenital infections. Therefore, development of a vaccine against HCMV is a main public health priority. Revealing the complex interaction between HCMV and host responses, is of utmost importance for understanding viral pathogenesis and for vaccine design. The present data contribute to the understanding of HCMV-specific host immune responses and reveal specifically the interaction between HLA-E and the virus-encoded UL40 peptide, which further leads to a potent NK cell response. We demonstrate that this interaction is a key factor for reduction of virus replication in immunosuppressed patients. We further show that distinct naturally occurring HCMV-UL40 variants reduce the activation of a specific subpopulation of host NK cells and thereby are associated with high-level viremia in the patients. These findings will allow the characterization of patients at risk for severe HCMV infection and contribute to strategies for HCMV vaccine development.
Journal Article
third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes
by
Katagiri, Takayuki
,
Hosomichi, Kazuyoshi
,
Hashimoto, Keiichiro
in
Amino Acid Sequence
,
Animals
,
chemistry
2007
Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: “U” and “Z/ZE.” However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage “L” because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the α1 domain, (2) a low GC content of the α1 and α2 exons, and (3) an HINLTL motif including a possible glycosylation site in the α3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as “Onmy-LBA-like.” Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.
Journal Article
MHC class I diversity in chimpanzees and bonobos
2017
Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes
A
,
B
,
C
, and
A-like
in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.
Journal Article