Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,976
result(s) for
"Histone-Lysine N-Methyltransferase - metabolism"
Sort by:
Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET
by
Leung, Danny
,
Tachibana, Makoto
,
Miyashita, Hiroki
in
631/136/532/2117
,
631/326/596/1787
,
631/337/176/2016
2010
Stem cell proviral silencing
Endogenous retroviruses are widely dispersed in mammalian genomes, and are silenced in somatic cells by DNA methylation. Here, an endogenous retroviruses silencing pathway independent of DNA methylation is shown to operate in embryonic stem cells. The pathway involves the histone H3K9 methyltransferase ESET/SETDB1 and might be important for endogenous retrovirus silencing during the stages in embryogenesis when DNA methylation is reprogrammed.
Endogenous retroviruses (ERVs) are widely dispersed in mammalian genomes, and are silenced in somatic cells by DNA methylation. Here, an ERV silencing pathway independent of DNA methylation is shown to operate in embryonic stem cells. The pathway involves the histone H3K9 methyltransferase ESET and might be important for ERV silencing during the stages in embryogenesis when DNA methylation is reprogrammed.
Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising ∼10% of the mouse genome
1
. These parasitic elements are responsible for >10% of spontaneous mutations
2
. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells
3
,
4
,
5
, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV)
6
,
7
,
8
. Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts
9
. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Krüppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28)
10
,
11
are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (
Dnmt1
-/-
Dnmt3a
-/-
Dnmt3b
-/-
) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.
Journal Article
Loss of Kmt2c or Kmt2d drives brain metastasis via KDM6A-dependent upregulation of MMP3
2024
KMT2C
and
KMT2D
, encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of
Kmt2c
or
Kmt2d
in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified
Mmp3
as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with
KMT2C-
mutant TNBC have higher
MMP3
levels. Downregulation or pharmacological inhibition of KDM6A diminished
Mmp3
upregulation induced by the loss of histone–lysine
N
-methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of
Mmp3
. Taken together, we identified the KDM6A–matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC.
Seehawer et al. show that deletion of
Kmt2c
or
Kmt2d
promotes brain metastasis in mouse models of triple-negative breast cancer due to altered KDM6A activity and upregulated MMP3 expression, which may constitute a potential therapeutic target.
Journal Article
G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription
2008
Methylation of DNA and lysine 9 of histone H3 (H3K9) are well‐conserved epigenetic marks for transcriptional silencing. Although H3K9 methylation directs DNA methylation in filamentous fungi and plants, this pathway has not been corroborated in mammals. G9a and GLP/Eu‐HMTase1 are two‐related mammalian lysine methyltransferases and a G9a/GLP heteromeric complex regulates H3K9 methylation of euchromatin. To elucidate the function of G9a/GLP‐mediated H3K9 methylation in the regulation of DNA methylation and transcriptional silencing, we characterized ES cells expressing catalytically inactive mutants of G9a and/or GLP. Interestingly, in ES cells expressing a G9a‐mutant/GLP complex that does not rescue global H3K9 methylation, G9a/GLP‐target genes remain silent. The CpG sites of the promoter regions of these genes were hypermethylated in such mutant ES cells, but hypomethylated in
G9a‐
or
GLP
‐KO ES cells. Treatment with a DNA methyltransferase inhibitor reactivates these G9a/GLP‐target genes in ES cells expressing catalytically inactive G9a/GLP proteins, but not the wild‐type proteins. This is the first clear evidence that G9a/GLP suppresses transcription by independently inducing both H3K9 and DNA methylation.
Journal Article
Targeting BIG3–PHB2 interaction to overcome tamoxifen resistance in breast cancer cells
by
Katagiri, Toyomasa
,
Akiyama, Miki
,
Inoue, Tsuyoshi
in
631/67/1059/2326
,
631/67/1059/602
,
631/67/1347
2013
The acquisition of endocrine resistance is a common obstacle in endocrine therapy of patients with oestrogen receptor-α (ERα)-positive breast tumours. We previously demonstrated that the BIG3–PHB2 complex has a crucial role in the modulation of oestrogen/ERα signalling in breast cancer cells. Here we report a cell-permeable peptide inhibitor, called ERAP, that regulates multiple ERα-signalling pathways associated with tamoxifen resistance in breast cancer cells by inhibiting the interaction between BIG3 and PHB2. Intrinsic PHB2 released from BIG3 by ERAP directly binds to both nuclear- and membrane-associated ERα, which leads to the inhibition of multiple ERα-signalling pathways, including genomic and non-genomic ERα activation and ERα phosphorylation, and the growth of ERα-positive breast cancer cells both
in vitro
and
in vivo
. More importantly, ERAP treatment suppresses tamoxifen resistance and enhances tamoxifen responsiveness in ERα-positive breast cancer cells. These findings suggest inhibiting the interaction between BIG3 and PHB2 may be a new therapeutic strategy for the treatment of luminal-type breast cancer.
Oestrogen receptor-α (ERα) signalling has a role in breast cancer drug resistance. Here, the authors report a synthetic peptide that disrupts the interaction between the signalling molecules BIG3 and PHB2, and thereby suppresses tamoxifen resistance.
Journal Article
Cancer‐associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo
2013
Global histone modification patterns correlate with tumor phenotypes and prognostic factors in multiple tumor types. Recent studies suggest that aberrant histone modifications play an important role in cancer. However, the effects of global epigenetic rearrangements on cell functions remain poorly understood. In this study, we show that the histone H3 lysine 9 (H3K9) methyltransferase SUV39H1 is clearly involved in regulating cell migration in vitro. Overexpression of wild‐type SUV39H1, but not enzymatically inactive SUV39H1, activated migration in breast and colorectal cancer cells. Inversely, migration was reduced by knockdown of SUV39H1 or chemical inhibition by chaetocin. In addition, H3K9 trimethylation (H3K9me3) was specifically increased in invasive regions of colorectal cancer tissues. Moreover, the presence of H3K9me3 positively correlated with lymph node metastasis in colorectal cancer patients. Furthermore, overexpression of SUV39H1 drove tumorigenesis in mouse, resulting in a considerable decrease in survival rate. These data indicate that H3K9 trimethylation plays an important role in human colorectal cancer progression, possibly by promoting collective cell invasion.
Journal Article
Impact of NSD1 Alternative Transcripts in Actin Filament Formation and Cellular Division Pathways in Fibroblasts
by
Cangelosi, Davide
,
Baldo, Chiara
,
Dequiedt, Franck
in
Actin
,
Actin Cytoskeleton - genetics
,
Actin Cytoskeleton - metabolism
2024
Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative transcripts, termed AT2 (NSD1 Δ5Δ7) and AT3 (NSD1 Δ19–23 at the 5′ end). The precise molecular pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein expression and transcriptome data was explored. We demonstrate that one gene target of NSD1 isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and we observed that this caused selective loss of stress fibers. Our findings provide novel insights into NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in regulating the actin cytoskeleton and stress fiber formation in fibroblasts.
Journal Article
Fasting Induces Hepatocellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression
2020
Background. Hepatocellular carcinoma (HCC) is a life-threatening cancer, and the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signalling pathway plays a crucial role in apoptosis resistance in cancer cells. Fasting is reported to mediate tumour growth reduction and apoptosis. SET8 is involved in cancer proliferation, invasiveness, and migration. However, whether SET8 participates in fasting-mediated apoptosis in HCC remains unclear. Methods. We used immunohistochemical staining to analyse the expression of SET8, Keap1, and Nrf2 in HCC tissues. Cell viability, apoptosis, and cellular reactive oxygen species (ROS) were assessed, and Western blot and qPCR analyses were used to examine the expression of Keap1/Nrf2 in HCC cells under fasting, SET8 overexpression, and PGC1α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1α interacts with SET8. In vivo experiments were performed to verify the conclusions from the in vitro experiments. Results. Our data indicate that SET8 expression is associated with poor survival in HCC patients. Both in vitro and in vivo results demonstrated that fasting decreased cell viability and downregulated expression of SET8, Nrf2, and downstream effectors of Nrf2, while it upregulated Keap1 expression, mediated ROS accumulation, and induced HCC cell apoptosis. These results were similar to what is observed in SET8-deficient cells. Furthermore, SET8 was found to interact with PGC1α, and both PGC1α and H4K20me1, a downstream target of SET8, were found to be enriched at the Keap1 promoter region. These two factors were further determined to attenuate Keap1 promoter activity. Conclusions. The results of our study demonstrate that fasting induces HCC apoptosis by inhibiting SET8 expression and that SET8 interacts with PGC1α to activate the Nrf2/ARE signalling pathway by inhibiting Keap1 expression.
Journal Article
The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny
by
Takasaki, Teruaki
,
Egelhofer, Thea A.
,
Rechtsteiner, Andreas
in
Animals
,
Binding Sites
,
Biocatalysis
2010
Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost approximately 2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5' regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.
Journal Article
H4K20me1 Contributes to Downregulation of X-Linked Genes for C. elegans Dosage Compensation
2012
The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.
Journal Article
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
2023
Targeting critical epigenetic regulators reverses aberrant transcription in cancer, thereby restoring normal tissue function
1
–
3
. The interaction of menin with lysine methyltransferase 2A (KMT2A), an epigenetic regulator, is a dependence in acute leukaemia caused by either rearrangement of
KMT2A
or mutation of the nucleophosmin 1 gene (
NPM1
)
4
–
6
.
KMT2A
rearrangements occur in up to 10% of acute leukaemias and have an adverse prognosis, whereas
NPM1
mutations occur in up to 30%, forming the most common genetic alteration in acute myeloid leukaemia
7
,
8
. Here, we describe the results of the first-in-human phase 1 clinical trial investigating revumenib (SNDX-5613), a potent and selective oral inhibitor of the menin–KMT2A interaction, in patients with relapsed or refractory acute leukaemia (ClinicalTrials.gov, NCT04065399). We show that therapy with revumenib was associated with a low frequency of grade 3 or higher treatment-related adverse events and a 30% rate of complete remission or complete remission with partial haematologic recovery (CR/CRh) in the efficacy analysis population. Asymptomatic prolongation of the QT interval on electrocardiography was identified as the only dose-limiting toxicity. Remissions occurred in leukaemias refractory to multiple previous lines of therapy. We demonstrate clearance of residual disease using sensitive clinical assays and identify hallmarks of differentiation into normal haematopoietic cells, including differentiation syndrome. These data establish menin inhibition as a therapeutic strategy for susceptible acute leukaemia subtypes.
Revumenib, a potent and selective oral inhibitor of the menin–KMT2A interaction, is associated with a low frequency of treatment-related adverse events and promising clinical activity in patients with relapsed or refractory acute leukaemia.
Journal Article