Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Holospora"
Sort by:
Clarification of the Taxonomic Position of Paramecium caudatum Micronucleus Symbionts
2021
Bacteria of genus Holospora (order Holosporales, class Alphaproteobacteria) are obligate intranuclear symbionts of ciliates Paramecium spp. with strict host species and nuclear (macronucleus or micronucleus) specificity. However, three species under study Holospora undulata, Holospora elegans and ‘Holospora recta' occupy the same ecological niche—micronucleus of Paramecium caudatum and demonstrate some differences in morphology of infectious form. The genetic diversity of holosporas by rrs and rpoB sequence analysis was determined. Phylogenetic and phylogenomic analysis of Holospora spp., as well as some phenotypic features indicate that there is no distinctive difference supporting studied micronuclear endosymbionts as distinct species. Therefore, Holospora elegans and ‘Holospora recta' should be considered subspecies of Holospora undulata (ex Haffkine 1890) Gromov and Ossipov 1981, which was described first. Thus, we confirmed the evolutionary aspects of the development of symbiotic relationships: holosporas have a strict specificity to the host species and the type of nucleus.
Journal Article
Revised Systematics of Holospora-Like Bacteria and Characterization of \Candidatus Gortzia infectiva\, a Novel Macronuclear Symbiont of Paramecium jenningsi
by
Schrallhammer, Martina
,
Boscaro, Vittorio
,
Petroni, Giulio
in
Bacteria
,
Biological and medical sciences
,
Biological taxonomies
2013
The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, \"Candidatus Gortzia infectiva\", was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.
Journal Article
A 63-kDa Periplasmic Protein of the Endonuclear Symbiotic Bacterium Holospora obtusa Secreted to the Outside of the Bacterium during the Early Infection Process Binds Weakly to the Macronuclear DNA of the Host Paramecium caudatum
by
Hideaki Kawano
,
Isamu Miyakawa
,
Masahiro Fujishima
in
Adaptability
,
Affinity chromatography
,
Amino acid sequence
2023
The Gram-negative bacterium Holospora obtusa is a macronucleus-specific symbiont of the ciliate Paramecium caudatum. It is known that an infection of this bacterium induces high level expressions of the host hsp60 and hsp70 genes, and the host cell acquires both heat-shock and high salt resistances. In addition, an infectious form of H. obtusa-specific 63-kDa periplasmic protein with a DNA-binding domain in its amino acid sequence is secreted into the host macronucleus after invasion into the macronucleus and remain within the nucleus. These facts suggest that binding of the 63-kDa protein to the host macronuclear DNA causes changes in the host gene expressions and enhances an environmental adaptability of the host cells. This 63-kDa protein was renamed as periplasmic region protein 1 (PRP1) to distinguish it from other proteins with similar molecular weights. To confirm whether PRP1 indeed binds to the host DNA, SDS-DNA PAGE and DNA affinity chromatography with calf thymus DNA and P. caudatum DNA were conducted and confirmed that PRP1 binds weakly to the P. caudatum DNA with a monoclonal antibody raised for the 63-kDa protein.
Journal Article
An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov
by
Petroni, Giulio
,
Castelli, Michele
in
Alphaproteobacteria - classification
,
Alphaproteobacteria - genetics
,
Alphaproteobacteria - physiology
2025
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae ). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales . First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae , within the order Rhodospirillales . Then, we examine the phylogenetic diversity of the Holosporineae , presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora , the host manipulator ‘ Caedimonas ’, and the farmed shrimp pathogen ‘ Candidatus Hepatobacter’. Next, we put these bacteria in the broad context of the whole Holosporineae , by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae .
Journal Article
Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web
by
Kaltz, Oliver
,
Petchey, Owen L.
,
Griffin, Joanne S.
in
Animals
,
Behavior, Animal
,
Ciliophora - physiology
2015
1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. 2. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction.
Journal Article
“Candidatus Mystax nordicus” Aggregates with Mitochondria of Its Host, the Ciliate Paramecium nephridiatum
by
Benken, Konstantin
,
Sabaneyeva, Elena
,
Korotaev, Aleksandr
in
16S rRNA gene
,
Aggregates
,
atomic force microscopy
2020
Extensive search for new endosymbiotic systems in ciliates occasionally reverts us to the endosymbiotic bacteria described in the pre-molecular biology era and, hence, lacking molecular characterization. A pool of these endosymbionts has been referred to as a hidden bacterial biodiversity from the past. Here, we provide a description of one of such endosymbionts, retrieved from the ciliate Paramecium nephridiatum. This curve-shaped endosymbiont (CS), which shared the host cytoplasm with recently described “Candidatus Megaira venefica”, was found in the same host and in the same geographic location as one of the formerly reported endosymbiotic bacteria and demonstrated similar morphology. Based on morphological data obtained with DIC, TEM and AFM and molecular characterization by means of sequencing 16S rRNA gene, we propose a novel genus, “Candidatus Mystax”, with a single species “Ca. Mystax nordicus”. Phylogenetic analysis placed this species in Holosporales, among Holospora-like bacteria. Contrary to all Holospora species and many other Holospora-like bacteria, such as “Candidatus Gortzia”, “Candidatus Paraholospora” or “Candidatus Hafkinia”, “Ca. Mystax nordicus” was never observed inside the host nucleus. “Ca. Mystax nordicus” lacked infectivity and killer effect. The striking peculiarity of this endosymbiont was its ability to form aggregates with the host mitochondria, which distinguishes it from Holospora and Holospora-like bacteria inhabiting paramecia.
Journal Article
“Candidatus Hafkinia simulans” gen. nov., sp. nov., a Novel Holospora-Like Bacterium from the Macronucleus of the Rare Brackish Water Ciliate Frontonia salmastra (Oligohymenophorea, Ciliophora)
by
Modeo, Letizia
,
Ferrantini, Filippo
,
Serra, Valentina
in
Bacteria
,
Biodiversity
,
Biomedical and Life Sciences
2019
We characterized a novel Holospora-like bacterium (HLB) (Alphaproteobacteria, Holosporales) living in the macronucleus of the brackish water ciliate Frontonia salmastra. This bacterium was morphologically and ultrastructurally investigated, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and performed in situ hybridization experiments with a specifically-designed probe. A new taxon, “Candidatus Hafkinia simulans”, was established for this HLB. The phylogeny of the family Holosporaceae based on 16S rRNA gene sequences was inferred, adding to the already available data both the sequence of the novel bacterium and those of other Holospora and HLB species recently characterized. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and placed the new endosymbiont as the sister genus of Holospora. Additionally, the host ciliate F. salmastra, recorded in Europe for the first time, was concurrently described through a multidisciplinary study. Frontonia salmastra’s phylogenetic position in the subclass Peniculia and the genus Frontonia was assessed according to 18S rRNA gene sequencing. Comments on the biodiversity of this genus were added according to past and recent literature.
Journal Article
Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium “Candidatus Holospora parva”
2016
Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of \"green\" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name \"Candidatus Holospora parva\" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.
Journal Article
Complex life cycle, broad host range and adaptation strategy of the intranuclear Paramecium symbiont Preeria caryophila comb. nov
by
Nekrasova, Irina
,
Schweikert, Michael
,
Potekhin, Alexey
in
Acclimatization
,
Adaptation
,
Animals
2018
Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.
Journal Article
Identification of novel Legionella genes required for endosymbiosis in Paramecium based on comparative genome analysis with Holospora spp
2018
The relationship between Legionella and protist hosts has a huge impact when considering the infectious risk in humans because it facilitates the long-term replication and survival of Legionella in the environment. The ciliate Paramecium is considered to be a protist host for Legionella in natural environments, but the details of their endosymbiosis are largely unknown. In this study, we determined candidate Legionella pneumophila genes that are likely to be involved in the establishment of endosymbiosis in Paramecium caudatum by comparing the genomes of Legionella spp. and Holospora spp. that are obligate endosymbiotic bacteria in Paramecium spp. Among the candidate genes, each single deletion mutant for five genes (lpg0492, lpg0522, lpg0523, lpg2141 and lpg2398) failed to establish endosymbiosis in P. caudatum despite showing intracellular growth in human macrophages. The mutants exhibited no characteristic changes in terms of their morphology, multiplication rate or capacity for modulating the phagosomes in which they were contained, but their resistance to lysozyme decreased significantly. This study provides insights into novel factors required by L. pneumophila for endosymbiosis in P. caudatum, and suggests that endosymbiotic organisms within conspecific hosts may have shared genes related to effective endosymbiosis establishment.
Journal Article