Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1
result(s) for
"Huashi Baidu Formula (HSBDF)"
Sort by:
HSBDF-Derived Bioactive Components Broadly Inhibit Enteroviruses by Targeting 3C Protease and Attenuating Inflammatory Responses
by
Lou, Fuxing
,
Liu, Chunlin
,
Li, Zhenlu
in
3C protease inhibitor
,
anti-inflammatory
,
Antiviral activity
2025
Human enteroviruses are important pathogens of hand-foot-and-mouth disease, poliomyelitis, and encephalitis, etc., posing substantial global health burdens with no specific approved therapeutics. While traditional Chinese medicine (TCM) has demonstrated antiviral potential during the COVID-19 pandemic, its efficacy and pharmacodynamic material basis against enteroviruses remains underexplored. Here, we systematically characterized the broad-spectrum anti-enterovirus activity of Huashi Baidu Formula (HSBDF), a clinically approved TCM for COVID-19, and identified three flavonoid compounds as its active components responsible for this antiviral effect. Transcriptomics analysis revealed that HSBDF attenuated CV-A9-induced inflammation by modulating MAPK and NF-κB signaling pathways. High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) analysis identified 152 chemical compounds in HSBDF, among which three flavonoids—velutin, isorhamnetin, and (−)-epicatechin gallate—exhibited potent pan-enteroviral inhibition. Mechanistically, these compounds suppressed the activity of 3C proteases in enteroviruses, while concurrently attenuating CV-A9-induced upregulation of IL-6, TNF-α, MCP-1, and COX-2. Utilizing a BALB/c young mouse model, it was demonstrated that the HSBDF and its compound velutin effectively suppressed viral replication in vivo. Collectively, this study advances TCM-based strategies for enterovirus therapy exemplified by HSBDF and highlights flavonoid scaffolds as promising candidates for developing broad-spectrum anti-enteroviral agents.
Journal Article