Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
25
result(s) for
"Human evolution History Chronology."
Sort by:
The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age
2017
Thermoluminescence dating of fire-heated flint artefacts, and directly associated newly discovered remains of
Homo sapiens
, indicate that the Middle Stone Age site of Jebel Irhoud in Morocco is 383–247 thousand years old.
Early dawn for
Homo sapiens
The exact place and time that our species emerged remains obscure because the fossil record is limited and the chronological age of many key specimens remains uncertain. Previous fossil evidence has placed the emergence of modern human biology in eastern Africa around 200,000 years ago. In this issue of
Nature
, Jean-Jaques Hublin and colleagues report new human fossils from Jebel Irhoud, Morocco; their work is accompanied by a separate report on the dating of the fossils by Shannon McPherron and colleagues. Together they report remains dating back 300,000–350,000 years. They identify numerous features, including a facial, mandibular and dental morphology, that align the material with early or recent modern humans. They also identified more primitive neurocranial and endocranial morphology. Collectively, the researchers believe that this mosaic of features displayed by the Jebel Irhoud hominins assigns them to the earliest evolutionary phase of
Homo sapiens
. Both papers suggest that the evolutionary processes behind the emergence of modern humans were not confined to sub-Saharan Africa.
The timing and location of the emergence of our species and of associated behavioural changes are crucial for our understanding of human evolution. The earliest fossil attributed to a modern form of
Homo sapiens
comes from eastern Africa and is approximately 195 thousand years old
1
,
2
, therefore the emergence of modern human biology is commonly placed at around 200 thousand years ago
3
,
4
. The earliest Middle Stone Age assemblages come from eastern and southern Africa but date much earlier
5
,
6
,
7
. Here we report the ages, determined by thermoluminescence dating, of fire-heated flint artefacts obtained from new excavations at the Middle Stone Age site of Jebel Irhoud, Morocco, which are directly associated with newly discovered remains of
H. sapiens
8
. A weighted average age places these Middle Stone Age artefacts and fossils at 315 ± 34 thousand years ago. Support is obtained through the recalculated uranium series with electron spin resonance date of 286 ± 32 thousand years ago for a tooth from the Irhoud 3 hominin mandible. These ages are also consistent with the faunal and microfaunal
9
assemblages and almost double the previous age estimates for the lower part of the deposits
10
,
11
. The north African site of Jebel Irhoud contains one of the earliest directly dated Middle Stone Age assemblages, and its associated human remains are the oldest reported for
H. sapiens
. The emergence of our species and of the Middle Stone Age appear to be close in time, and these data suggest a larger scale, potentially pan-African, origin for both.
Journal Article
Sapiens : a brief history of humankind
\"One hundred thousand years ago, at least six different species of humans inhabited Earth. Yet today there is only one--homo sapiens. What happened to the others? And what may happen to us? Most books about the history of humanity pursue either a historical or a biological approach, but Dr. Yuval Noah Harari breaks the mold with this ... book that begins about 70,000 years ago with the appearance of modern cognition. From examining the role evolving humans have played in the global ecosystem to charting the rise of empires, Sapiens integrates history and science to reconsider accepted narratives, connect past developments with contemporary concerns, and examine specific events within the context of larger ideas\"-- Provided by publisher.
Death march of a segmented and trilobate bilaterian elucidates early animal evolution
2019
The origin of motility in bilaterian animals represents an evolutionary innovation that transformed the Earth system. This innovation probably occurred in the late Ediacaran period—as evidenced by an abundance of trace fossils (ichnofossils) dating to this time, which include trails, trackways and burrows
1
–
3
. However, with few exceptions
4
–
8
, the producers of most of the late Ediacaran ichnofossils are unknown, which has resulted in a disconnection between the body- and trace-fossil records. Here we describe the fossil of a bilaterian of the terminal Ediacaran period (dating to 551–539 million years ago), which we name
Yilingia spiciformis
(gen. et sp. nov). This body fossil is preserved along with the trail that the animal produced during a death march.
Yilingia
is an elongate and segmented bilaterian with repetitive and trilobate body units, each of which consists of a central lobe and two posteriorly pointing lateral lobes, indicating body and segment polarity.
Yilingia
is possibly related to panarthropods or annelids, and sheds light on the origin of segmentation in bilaterians. As one of the few Ediacaran animals demonstrated to have produced long and continuous trails,
Yilingia
provides insights into the identity of the animals that were responsible for Ediacaran trace fossils.
Yilingia spiciformis
, a bilaterian dating to the Ediacaran period, is described from body fossils associated with trails produced by the animal, shedding light on the origins of segmentation and motility in bilaterian animals.
Journal Article
Dental Ontogeny in Pliocene and Early Pleistocene Hominins
by
Houssaye, Alexandra
,
Smith, Tanya M.
,
Moggi-Cecchi, Jacopo
in
Age determination
,
Animals
,
Apes
2015
Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6-12 days (possibly 5-13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.
Journal Article
Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa)
2017
Projectile technology is considered to appear early in the southern African Middle Stone Age (MSA) and the rich and high resolution MSA sequence of Sibudu Cave in KwaZulu-Natal has provided many new insights about the use and hafting of various projectile forms. We present the results of a functional and technological analysis on a series of unpublished serrated bifacial points recently recovered from the basal deposits of Sibudu Cave. These serrated tools, which only find equivalents in the neighbouring site of Umhlatuzana, precede the Still Bay techno-complex and are older than 77 ka BP. Independent residue and use-wear analyses were performed in a phased procedure involving two separate analysts, which allowed the engagement between two separate lines of functional evidence. Thanks to the excellent preservation at Sibudu Cave, a wide range of animal, plant and mineral residues were observed in direct relation with diagnostic wear patterns. The combination of technological, wear and residue evidence allowed us to confirm that the serration was manufactured with bone compressors and that the serrated points were mounted with a composite adhesive as the tips of projectiles used in hunting activities. The suite of technological and functional data pushes back the evidence for the use of pressure flaking during the MSA and highlights the diversity of the technical innovations adopted by southern African MSA populations. We suggest the serrated points from the stratigraphic units Adam to Darya of Sibudu illustrate one important technological adaptation of the southern African MSA and provide another example of the variability of MSA bifacial technologies.
Journal Article
Middle and Later Stone Age chronology of Kisese II rockshelter (UNESCO World Heritage Kondoa Rock-Art Sites), Tanzania
2018
The archaeology of East Africa during the last ~65,000 years plays a central role in debates about the origins and dispersal of modern humans, Homo sapiens. Despite the historical importance of the region to these discussions, reliable chronologies for the nature, tempo, and timing of human behavioral changes seen among Middle Stone Age (MSA) and Later Stone Age (LSA) archaeological assemblages are sparse. The Kisese II rockshelter in the Kondoa region of Tanzania, originally excavated in 1956, preserves a ≥ 6-m-thick archaeological succession that spans the MSA/LSA transition, with lithic artifacts such as Levallois and bladelet cores and backed microliths, the recurrent use of red ochre, and >5,000 ostrich eggshell beads and bead fragments. Twenty-nine radiocarbon dates on ostrich eggshell carbonate make Kisese II one of the most robust chronological sequences for understanding archaeological change over the last ~47,000 years in East Africa. In particular, ostrich eggshell beads and backed microliths appear by 46-42 ka cal BP and occur throughout overlying Late Pleistocene and Holocene strata. Changes in lithic technology suggest an MSA/LSA transition that began 39-34.3 ka, with typical LSA technologies in place by the Last Glacial Maximum. The timing of these changes demonstrates the time-transgressive nature of behavioral innovations often linked to the origins of modern humans, even within a single region of Africa.
Journal Article
The Energetic Cost of Reproduction and Its Effect on Optimal Life-History Strategies
2018
Trade-offs in energy allocation between growth, reproduction, and survival are at the core of life-history theory. While age-specific mortality is considered to be the main determinant of the optimal allocation, some life-history strategies, such as delayed or skipped reproduction, may be better understood when also accounting for reproduction costs. Here, we present a two-pool indeterminate grower model that includes survival and energetic costs of reproduction. The energetic cost sets a minimum reserve required for reproduction, while the survival cost reflects increased mortality from low postreproductive body condition. Three life-history parameters determining age-dependent energy allocation to soma, reserve, and reproduction are optimized, and we show that the optimal strategies can reproduce realistic emergent growth trajectories, maturation ages, and reproductive outputs for fish. The model predicts maturation phase shifts along the gradient of condition-related mortality and shows that increased harvesting will select for earlier maturation and higher energy allocation to reproduction. However, since the energetic reproduction cost sets limits on how early an individual can mature, an increase in fitness at high harvesting can only be achieved by diverting most reserves into reproduction. The model presented here can improve predictions of life-history responses to environmental change and human impacts because key life-history traits such as maturation age and size, maximum body size, and size-specific fecundity emerge dynamically.
Journal Article
Chronology of Ksar Akil (Lebanon) and Implications for the Colonization of Europe by Anatomically Modern Humans
by
Douka, Katerina
,
Bergman, Christopher A.
,
Wesselingh, Frank P.
in
Analysis
,
Archaeology
,
Art history
2013
The Out-of-Africa model holds that anatomically modern humans (AMH) evolved and dispersed from Africa into Asia, and later Europe. Palaeoanthropological evidence from the Near East assumes great importance, but AMH remains from the region are extremely scarce. 'Egbert', a now-lost AMH fossil from the key site of Ksar Akil (Lebanon) and 'Ethelruda', a recently re-discovered fragmentary maxilla from the same site, are two rare examples where human fossils are directly linked with early Upper Palaeolithic archaeological assemblages. Here we radiocarbon date the contexts from which Egbert and Ethelruda were recovered, as well as the levels above and below the findspots. In the absence of well-preserved organic materials, we primarily used marine shell beads, often regarded as indicative of behavioural modernity. Bayesian modelling allows for the construction of a chronostratigraphic framework for Ksar Akil, which supports several conclusions. The model-generated age estimates place Egbert between 40.8-39.2 ka cal BP (68.2% prob.) and Ethelruda between 42.4-41.7 ka cal BP (68.2% prob.). This indicates that Egbert is of an age comparable to that of the oldest directly-dated European AMH (Peştera cu Oase). Ethelruda is older, but on current estimates not older than the modern human teeth from Cavallo in Italy. The dating of the so-called \"transitional\" or Initial Upper Palaeolithic layers of the site may indicate that the passage from the Middle to Upper Palaeolithic at Ksar Akil, and possibly in the wider northern Levant, occurred later than previously estimated, casting some doubts on the assumed singular role of the region as a locus for human dispersals into Europe. Finally, tentative interpretations of the fossil's taxonomy, combined with the chronometric dating of Ethelruda's context, provides evidence that the transitional/IUP industries of Europe and the Levant, or at least some of them, may be the result of early modern human migration(s).
Journal Article
Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map
2012
Genetic relationships between human groups were first studied by comparisons of relative allele frequency at multiple loci. Geographical study of detailed, highly resolved trees of single, non-recombining uniparental loci (mitochondrial DNA: mtDNA and Y chromosome/non-recombining Y: NRY), following specific lineages rather than populations, then revolutionized knowledge of the peopling of the world, although, curiously, the use of geographically highly specific mutations that protect against malaria, found on individual autosomal globin genes, were first in single-locus phylogeography. mtDNA, with its high single nucleotide polymorphism (SNP) mutation rates and relative ease of dating, led the way and gave stronger proof of the recent near replacement of all human species by anatomically modern humans (AMH). AMH left Africa via a single southern exit about 70 000 years ago and rapidly spread around the Indian Ocean towards the Antipodes, long before a small branch left a South Asian colony, earlier on the trail, to populate Europe. The worldwide skeleton phylogeny of mtDNA is fully resolved, but a regional analysis will continue to illuminate subsequent migrations. NRY with a lower SNP mutation rate still has a dating problem relating to use the of single tandem repeats (STRs), but has validated mtDNA results and with more geographical specificity and genomic size, as with the autosomal human genome, has much more detail to offer for the future.
Journal Article