Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
822,211
result(s) for
"Humanities and Social Sciences"
Sort by:
The British Library : guide
by
British Library. Humanities and Social Sciences
,
Anderson, Janice author
,
British Library. Humanities and Social Sciences British Library Humanities & Social Sciences collections
in
British Library. Humanities and Social Sciences
,
Library resources England London
,
Social sciences Library resources
1995
Dating the landscape evolution around the Chauvet-Pont d’Arc cave
by
Gresse, Marceau
,
Phillippe, Anne
,
Revil, André
in
631/181/27
,
704/445/215
,
[SDE]Environmental Sciences
2021
The Chauvet cave (UNESCO World Heritage site, France) is located in the Ardèche Gorge, a unique physical and cultural landscape. Its setting within the gorge—overlooking a meander cutoff containing a natural arch called the Pont d’Arc—is also remarkable. Investigating possible associations between sites’ physical and cultural settings, chronologies of human occupation, and access conditions has become a major theme in archeological research. The present study aims to reconstruct the landscape of the Pont d'Arc meander cutoff during the Upper Paleolithic, when humans were present in the Chauvet Cave. We used uranium-series and electron spin resonance analyses to date the formation of the Pont d’Arc natural arch in the Combe d’Arc meander cutoff, near the Chauvet Cave. Results show that the meander became totally cutoff between 108 and 138 ka (95%). Hence, the natural arch formed before the Upper Paleolithic and the first known human presence in the Chauvet Cave, dated to 37 ka cal BP. These results allowed us to reconstruct a key part of the landscape surrounding the Chauvet Cave when it was being used by Upper-Paleolithic societies.
Journal Article
A qualitative study of the perceptions and experiences of healthcare providers caring for critically ill patients during the first wave of the COVID-19 pandemic: A PsyCOVID-ICU substudy
by
Alexandra Laurent
,
Jean-Philippe Rigaud
,
Jean-Pierre Quenot
in
[SCCO.PSYC]Cognitive science/Psychology
,
[SDV]Life Sciences [q-bio]
,
[SHS.INFO]Humanities and Social Sciences/Library and information sciences
2022
Intensive care unit (ICU) staff have faced unprecedented levels of stress, in the context of profound upheaval of their working environment due to the COVID-19 pandemic. We explored the perceptions of frontline ICU staff about the first wave of the COVID-19 pandemic, and how this experience impacted their personal and professional lives. In a qualitative study as part of the PsyCOVID-ICU project, we conducted semi-structured interviews with a random sample of nurses and nurses' aides from 5 centres participating in the main PsyCOVID study. Interviews were recorded and fully transcribed, and analysed by thematic analysis. A total of 18 interviews were performed from 13 August to 6 October 2020; 13 were nurses, and 5 were nurses' aides. Thematic analysis revealed three major themes, namely: (1) Managing the home life; (2) Conditions in the workplace; and (3) the meaning of their profession. In this qualitative study investigating the experiences and perceptions of healthcare workers caring for critically ill patients during the first COVID-19 wave in France, the participants reported that the crisis had profound repercussions on both their personal and professional lives. The main factors affecting the participants were a fear of contamination, and the re-organisation of working conditions, against a background of a media \"infodemic\".
Journal Article
Sensemaking : the power of the humanities in the age of the algorithm
Madsbjerg argues that our fixation with data often masks deficiencies, and the risks for humankind are enormous. He posits that many of today's biggest success stories stem not from 'quant' thinking but from deep, nuanced engagement with culture, language, and history. He calls his method sensemaking.
The Minderoo-Monaco Commission on Plastics and Human Health
by
Enck, Judith
,
Landrigan, Philip J.
,
Charles, Dominic
in
501001 Allgemeine Psychologie
,
501001 General psychology
,
501002 Angewandte Psychologie
2023
Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted.
The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives.
This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations.
Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked.
The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic.
Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being.
Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of \"fenceline\" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life.
Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO
e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic
Journal Article
The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures
by
Krogstie, John
,
Sharifi, Ayyoob
,
Bibri, Simon Elias
in
Artificial intelligence
,
Big Data
,
Business administration
2022
Data infrastructures, economic processes, and governance models of digital platforms are increasingly pervading urban sectors and spheres of urban life. This phenomenon is known as platformization, which has in turn given rise to the phenomena of platform society, where platforms have permeated the core of urban societies. A recent manifestation of platformization is the Metaverse, a global platform project launched by Meta (formerly Facebook) as a globally operating platform company. The Metaverse represents an idea of a hypothetical “parallel virtual world” that incarnate ways of living and working in virtual cities as an alternative to smart cities of the future. Indeed, with emerging innovative technologies—such as Artificial Intelligence, Big Data, the IoT, and Digital Twins—providing rich datasets and advanced computational understandings of human behavior, the Metaverse has the potential to redefine city designing activities and service provisioning towards increasing urban efficiencies, accountabilities, and quality performance. However, there still remain ethical, human, social, and cultural concerns as to the Metaverse’s influence upon the quality of human social interactions and its prospective scope in reconstructing the quality of urban life. This paper undertakes an upper-level literature review of the area of the Metaverse from a broader perspective. Further, it maps the emerging products and services of the Metaverse, and explores their potential contributions to smart cities with respect to their virtual incarnation, with a particular focus on the environmental, economic, and social goals of sustainability. This study may help urban policy makers to better understand the opportunities and implications of the Metaverse upon tech-mediated practices and applied urban agendas, as well as assess the positives and negatives of this techno-urban vision. This paper also offers thoughts regarding the argument that the Metaverse has disruptive and substantive effects on forms of reconstructing reality in an increasingly platformized urban society. This will hopefully stimulate prospective research and further critical perspectives on the topic.
Journal Article
Negative emissions physically needed to keep global warming below 2 °C
2015
To limit global warming to <2 °C we must reduce the net amount of CO
2
we release into the atmosphere, either by producing less CO
2
(conventional mitigation) or by capturing more CO
2
(negative emissions). Here, using state-of-the-art carbon–climate models, we quantify the trade-off between these two options in RCP2.6: an Intergovernmental Panel on Climate Change scenario likely to limit global warming below 2 °C. In our best-case illustrative assumption of conventional mitigation, negative emissions of 0.5–3 Gt C (gigatonnes of carbon) per year and storage capacity of 50–250 Gt C are required. In our worst case, those requirements are 7–11 Gt C per year and 1,000–1,600 Gt C, respectively. Because these figures have not been shown to be feasible, we conclude that development of negative emission technologies should be accelerated, but also that conventional mitigation must remain a substantial part of any climate policy aiming at the 2-°C target.
It is widely acknowledged that some form of carbon capture will be necessary to limit global warming to less than 2 °C, but to what extent remains unclear. Here, using climate-carbon models, the authors quantify the amount of negative emissions and carbon storage capacity required to meet this target.
Journal Article
What Should We Agree on about the Repugnant Conclusion?
by
Pivato, Marcus
,
Tarsney, Christian
,
Forsberg, Lisa
in
Decision making
,
Demography
,
Economics and Finance
2021
The Repugnant Conclusion is an implication of some approaches to population ethics. It states, in Derek Parfit's original formulation,
For any possible population of at least ten billion people, all with a very high quality of life, there must be some much larger imaginable population whose existence, if other things are equal, would be better, even though its members have lives that are barely worth living. (Parfit 1984: 388)
Journal Article
Our Country Needs a Strong Leader Right Now
2019
Societal inequality has been found to harm the mental and physical health of its members and undermine overall social cohesion. Here, we tested the hypothesis that economic inequality is associated with a wish for a strong leader in a study involving 28 countries from five continents (Study 1, N = 6,112), a study involving an Australian community sample (Study 2, N = 515), and two experiments (Study 3a, N = 96; Study 3b, N = 296). We found correlational (Studies 1 and 2) and experimental (Studies 3a and 3b) evidence for our prediction that higher inequality enhances the wish for a strong leader. We also found that this relationship is mediated by perceptions of anomie, except in the case of objective inequality in Study 1. This suggests that societal inequality enhances the perception that society is breaking down (anomie) and that a strong leader is needed to restore order (even when that leader is willing to challenge democratic values).
Journal Article