Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,070 result(s) for "Humification"
Sort by:
Chemical Transformation of Humic Acid Molecules under the Influence of Mineral, Fungal and Bacterial Fertilization in the Context of the Agricultural Use of Degraded Soils
The main goal of this work was to study the structural transformation of humic acids (HAs) under the influence of selected strains of fungi (Aspergillus niger and Paecilomyces lilacinus) and bacteria (Bacillus sp., Paenibacillus polymyxa and Bacillus amyloliquefaciens) with/without the presence of NPK fertilizers. Two-year experiments were conducted on two different soils and HAs isolated from these soils were examined for structure, humification degree, and quantity using fluorescence and UV-Vis spectroscopy, elemental analysis, and extraction methods. Results showed that the applied additives contributed to the beneficial transformation of HAs, but effects differed for various soils. HAs from silty soil with higher organic carbon content showed simplification of their structure, and decreases in humification, molecular weight, and aromaticity under the influence of fungi and bacteria without NPK, and with NPK alone. With both fungi and NPK, increases in O/H and O/C atomic ratios indicated an increase in the number of O-containing functional groups. HAs from sandy soil did not show as many significant changes as did those from silty soil. Sandy soil exhibited a strong decline in HA content in the second year that was reduced/neutralized by the presence of fungi, bacteria, and NPK. Periodically observed fluorescence at ~300 nm/450 nm reflected formation of low-molecular HAs originating from the activity of microorganisms.
Waste milk humification product can be used as a slow release nano-fertilizer
The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments. The growth in global milk demand has been accompanied by an increase in waste milk disposal. Here, the authors transform waste milk through humification and incorporate the product into attapulgite creating a nano-fertiliser that benefits for plants growing in pots.
Co-composting of cattle manure and wheat straw covered with a semipermeable membrane: organic matter humification and bacterial community succession
Semipermeable membrane-covered composting is one of the most commonly used composting technologies in northeast China, but its humification process is not yet well understood. This study employed a semipermeable membrane-covered composting system to detect the organic matter humification and bacterial community evolution patterns over the course of agricultural waste composting. Variations in physicochemical properties, humus composition, and bacterial communities were studied. The results suggested that membrane covering improved humic acid (HA) content and degree of polymerization (DP) by 9.28% and 21.57%, respectively. Bacterial analysis indicated that membrane covering reduced bacterial richness and increased bacterial diversity. Membrane covering mainly affected the bacterial community structure during thermophilic period of composting. RDA analysis revealed that membrane covering may affect the bacterial community by altering the physicochemical properties such as moisture content. Correlation analysis showed that membrane covering activated the dominant genera Saccharomonospora and Planktosalinus to participate in the formation of HS and HA in composting, thus promoting HS formation and its structural complexity. Membrane covering significantly reduced microbial metabolism during the cooling phase of composting.
Degradation or humification: rethinking strategies to attenuate organic pollutants
The fate of organic pollutants in environmental matrices can be determined by degradation and humification. The humification process represents a promising strategy to remove organic pollutants, particularly those resistant to degradation. In contrast to the well-studied degradation process, the contribution and application prospects of the humification process for organic pollutant removal has been underestimated. The recent progress in synthesizing artificial humic substances (HS) has made directed humification of recalcitrant organic pollutants possible. This review focuses on degradation and humification of organic matter, especially recalcitrant organic pollutants. Challenges in understanding the contribution, underlying mechanisms, and artificial synthesis of HS for removing organic pollutants are also critically discussed. We advocate further investigating the humification of organic pollutants in future studies. Degradation and humification synergistically determine the environmental fate of organic pollutants.In contrast to previous studies focusing on degradation processes, humification represents a promising but underestimated strategy for removing recalcitrant organic pollutants.In degradation processes, reduced organic matter is utilized as electron donors to support oxidative respiration, or as fermentation substrates to produce volatile fatty acids. By contrast, recalcitrant oxidized organic matter needs to be reduced prior to subsequent degradation.Many pathways are identified for the generation of humic substances (HS), in which microbes play key roles in providing HS precursors and in subsequent polymerization.Artificial HS synthesis open a new avenue for removing organic pollutants under controlled conditions, largely dependent on the progress in construction of new chemical bonds.
Is enrichment with inorganic and organic compounds feasible for improving the quality of vermicomposting using water hyacinth biomass?
In eutrophic environments, aquatic weeds reproduce rapidly, occupying extensive areas of the water body and preventing the multiple use of water resources. The use of the biomass of these plants in vermicomposting represents a sustainable alternative utilization of the excess biomass produced by eutrophication. The enrichment of macrophyte biomass during vermicomposting was tested using aninorganic solution (NPK 1.75 % and NPK 3.50 %) and an organic solution with glucose (0.25 g/L and 0.50 g/L) to improve the quality of the vermicompost. The consumption of biomass of the macrophytes by the Eisenia fetida increased as the vermicomposting progressed, reaching the highest values at the end of the experimental period. The control treatment, i.e., without earthworms, remained stable.The electrical conductivity tended to increase for the treatments NPK 1.75 %, Glucose 0.25 g/L and Glucose 0.50 g/L. The pH of the vermicomposting tended to be neutral in all treatments. The control and inorganic treatments showed a reduction in macrophyte biomass and the number of individuals of Eisenia fetida. The additions of NPK and glucose slightly improved vermicompost quality andbiomass consumption by the earthworms. However, using vermicompost alone does not meet the requirements for its use as a fertilizer. Thus, we suggest the use of vermicompost in association with other fertilizers, adding moisture and structuring the soil.
Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone
Aim Litter humification is vital for carbon sequestration in terrestrial ecosystems. Probing the litter humification of treeline ecotone will be helpful to understand soil carbon afflux in alpine regions under climate change. Methods Foliar litter of six plant functional groups was chosen in an alpine treeline ecotone of the eastern Tibetan Plateau, and a field litterbag decomposition experiment (669 days) was conducted in an alpine shrubland (AS) and a coniferous forest (CF). Environmental factors, litter quality, humus concentrations (total humus, Huc; humic acid, HAc; and fulvic acid, FAc) and hue coefficient (ΔlogK and E4/E6) were measured to explore litter humification processes. Results Litter humification was controlled by both litter stoichiometric traits and local-environment conditions, while stoichiometric traits played a more obvious regulatory role. Significant discrepancies in litter humus were detected among six plant functional groups; more precisely, litter of evergreen conifer and shrubs showed a net accumulation of Huc and FAc during winter, whereas others experienced more mineralization than accumulation. Huc, HAc, and hue coefficient were mainly controlled by cellulose/N, cellulose/P, C/N, lignin/P, lignin/N, etc., yet FAc was more susceptible to local-environment conditions. Meanwhile, Huc, HAc and FAc, as well as humification degree and E4/E6 differed between AS and CF, with faster humification in AS. Conclusion We suggest that litter stoichiometric traits are more responsible for regulating litter humification than environmental conditions in elevational gradients. Furthermore, potential upward shifts by plants may accelerate litter humification in alpine ecosystems.
Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH ₄) vs. carbon dioxide (CO ₂) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH ₄ and CO ₂ production potentials, higher relative CH ₄/CO ₂ ratios, and a shift in CH ₄ production pathway from CO ₂ reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH ₄. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes.
Identification of peat type and humification by laboratory VNIR/SWIR hyperspectral imaging of peat profiles with focus on fen-bog transition in aapa mires
Aims Hyperspectral imaging (HSI) has high potential for analysing peat cores, but methodologies are deficient. We aimed for robust peat type classification and humification estimation. We also explored other factors affecting peat spectral properties. Methods We used two laboratory setups: VNIR (visible to near-infrared) and SWIR (shortwave infrared) for high resolution imaging of intact peat profiles with fen-bog transitions. Peat types were classified with support vector machines, indices were developed for von Post estimation, and K-means clustering was used to analyse stratigraphic patterns in peat quality. With separate experiments, we studied spectral effects of drying and oxidation. Results Despite major effects, oxidation and water content did not impede robust HSI classification. The accuracy between Carex peat and Sphagnum peat in validation was 80% with VNIR and 81% with SWIR data. The spectral humification indices had accuracies of 82% with VNIR and 56%. Stratigraphic HSI patterns revealed that 36% of peat layer shifts were inclined by over 20 degrees. Spectral indices were used to extrapolate visualisations of element concentrations. Conclusions HSI provided reliable information of basic peat quality and was useful in visual mapping, that can guide sampling for other analyses. HSI can manage large amounts of samples to widen the scope of detailed analysis beyond single profiles and it has wide potential in peat research beyond the exploratory scope of this paper. We were able to confirm the capacity of HSI to reveal shifts of peat quality, connected to ecosystem-scale change.
Mapping and monitoring peatland conditions from global to field scale
Peatlands cover only 3–4% of the Earth’s surface, but they store nearly 30% of global soil carbon stock. This significant carbon store is under threat as peatlands continue to be degraded at alarming rates around the world. It has prompted countries worldwide to establish regulations to conserve and reduce emissions from this carbon rich ecosystem. For example, the EU has implemented new rules that mandate sustainable management of peatlands, critical to reaching the goal of carbon neutrality by 2050. However, a lack of information on the extent and condition of peatlands has hindered the development of national policies and restoration efforts. This paper reviews the current state of knowledge on mapping and monitoring peatlands from field sites to the globe and identifies areas where further research is needed. It presents an overview of the different methodologies used to map peatlands in nine countries, which vary in definition of peat soil and peatland, mapping coverage, and mapping detail. Whereas mapping peatlands across the world with only one approach is hardly possible, the paper highlights the need for more consistent approaches within regions having comparable peatland types and climates to inform their protection and urgent restoration. The review further summarises various approaches used for monitoring peatland conditions and functions. These include monitoring at the plot scale for degree of humification and stoichiometric ratio, and proximal sensing such as gamma radiometrics and electromagnetic induction at the field to landscape scale for mapping peat thickness and identifying hotspots for greenhouse gas (GHG) emissions. Remote sensing techniques with passive and active sensors at regional to national scale can help in monitoring subsidence rate, water table, peat moisture, landslides, and GHG emissions. Although the use of water table depth as a proxy for interannual GHG emissions from peatlands has been well established, there is no single remote sensing method or data product yet that has been verified beyond local or regional scales. Broader land-use change and fire monitoring at a global scale may further assist national GHG inventory reporting. Monitoring of peatland conditions to evaluate the success of individual restoration schemes still requires field work to assess local proxies combined with remote sensing and modeling. Long-term monitoring is necessary to draw valid conclusions on revegetation outcomes and associated GHG emissions in rewetted peatlands, as their dynamics are not fully understood at the site level. Monitoring vegetation development and hydrology of restored peatlands is needed as a proxy to assess the return of water and changes in nutrient cycling and biodiversity.
Regulation of straw decomposition and its effect on soil function by the amount of returned straw in a cool zone rice crop system
The degradation process of returned straw in rice fields can improve soil organic matter and promote sustainable agriculture. The degradation process of returned straw is a humification process as well as a mineralization process involving microorganisms and enzymes. However, the degradation process of returned straw, the effect on straw decomposing microorganisms and the regulatory mechanism on potential functionality under cool climate flooding conditions are currently unknown.For this purpose, we investigated the biodegradation of straw from a biodegradation point of view at 20, 40, 71, 104, and 137 d after return under conventional (130 kg hm −2 ), 1/3 straw return (2933 kg hm −2 ), 2/3 straw return (5866 kg hm −2 ), and full straw return (8800 kg hm −2 ) applications in cool climate rice fields.. The test found Paludibacteraceae and Archaeaceae were the dominant bacteria for straw degradation, and their relative abundance was highest when 2/3 of straw was returned to the field. The straw degradation extracellular enzyme activity was higher in the late return period (104 d). At this time, the potential functionality of the soil differed significantly among the different return amounts, with the best extracellular enzyme activity and potential functionality at the 2/3 straw return amount. Therefore, the optimal amount of rice straw returned to the field is 5866 kg hm −2 at the current conventional N application rate (130 kg hm −2 ) in the cold zone.