Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
131
result(s) for
"Humulus - metabolism"
Sort by:
The molecular biology of fruity and floral aromas in beer and other alcoholic beverages
by
de Carvalho, Bruna Trindade
,
Holt, Sylvester
,
Thevelein, Johan M
in
Activating transcription factor 1
,
Alcoholic beverages
,
Alcoholic Beverages - analysis
2019
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Journal Article
Fingerprinting and chemotyping approaches reveal a wide genetic and metabolic diversity among wild hops (Humulus lupulus L.)
by
Henychová, Alena
,
Piutti, Séverine
,
Girardeau, Loïc
in
Aeroponics
,
Beer
,
Biology and Life Sciences
2025
Hop ( Humulus lupulus L.) is an emblematic industrial crop in the French North East region that developed at the same time as the brewing activity. Presently, this sector, especially microbreweries, are interested in endemic wild hops, which give beer production a local signature. In this study, we investigated the genetic and metabolic diversity of thirty-six wild hops sampled in various ecological environments. These wild accessions were propagated aeroponically and cultivated under uniform conditions (the same soil and the same environmental factors). Our phytochemical approach based on UHPLC-ESI-MS/MS analysis led to the identification of three metabolic clusters based on leaf content and characterized by variations in the contents of twelve specialized metabolites that were identified (including xanthohumol, bitter acids, and their oxidized derivatives). Furthermore, molecular characterization was carried out using sixteen EST-SSR microsatellites, allowing a genetic affiliation of our wild hops with hop varieties cultivated worldwide and wild hops genotyped to date using this method. Genetic proximity was observed for both European wild and hop varieties, especially for Strisselspalt, the historical variety of our region. Finally, our findings collectively assessed the impact of the hop genotype on the chemical phenotype through multivariate regression tree (MRT) analysis. Our results highlighted the ’WRKY 224’ allele as a key discriminator between high- and low-metabolite producers. Moreover, the model based on genetic information explained 40% of the variance in the metabolic data. However, despite this strong association, the model lacked predictive power, suggesting that its applicability may be confined to the datasets analyzed.
Journal Article
Abscisic Acid Enhances Ex Vitro Acclimatization Performance in Hop (Humulus lupulus L.)
by
Zubillaga, María F.
,
Matus, José Tomás
,
Navarro-Payá, David
in
Abiotic stress
,
Abscisic acid
,
Abscisic Acid - metabolism
2025
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, such as hop. This highlights the urgent need to enhance crop resilience to adverse environmental conditions. The phytohormone abscisic acid (ABA) is a key regulator of plant responses to abiotic stress, yet the ABA signaling pathway remains poorly characterized in hop. Harnessing the publicly available hop genomics resources, we identified eight members of the PYRABACTIN RESISTANCE 1 LIKE ABA receptor family (HlPYLs). Phylogenetic and gene structure analyses classified these HlPYLs into the three canonical ABA receptor subfamilies. Furthermore, all eight HlPYLs are likely functional, as suggested by the protein sequence visual analysis. Expression profiling indicates that ABA perception in hop is primarily mediated by the HlPYL1-like and HlPYL8-like subfamilies, while the HlPYL4-like group appears to play a more limited role. Structure modeling and topology predictions of HlPYL1b and HlPYL2 provided insights into their potential functional mechanisms. To assess the physiological relevance of ABA signaling in hop, we evaluated the impact of exogenous ABA application during the ex vitro acclimatization phase. ABA-treated plants exhibited more robust growth, reduced stress symptoms, and improved acclimatization success. These effects were associated with reduced leaf transpiration and enhanced stomatal closure, consistent with ABA-mediated drought tolerance mechanisms. Altogether, this study provides the first comprehensive characterization of ABA receptor components in hop and demonstrates the practical utility of ABA in improving plant performance under ex vitro conditions. These findings lay the groundwork for further functional studies and highlight ABA signaling as a promising target for enhancing stress resilience in hop, with broader implications for sustainable agriculture in the face of climate change.
Journal Article
Kombucha fortified with Cascade hops (Humulus lupulus L.): enhanced antioxidative and sensory properties
by
Kordialik-Bogacka, Edyta
,
Ditrych, Maciej
,
Ścieszka, Sylwia
in
antioxidant activity
,
Antioxidants - analysis
,
Antioxidants - metabolism
2025
In recent years, there has been a surge in the production of kombucha—a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha. However, aiming at retaining the highest antioxidative properties of kombucha, it remains unclear at which stage of the production process hops should be added. The study investigated the effect of hop supplementation during kombucha production on the basic physicochemical, antioxidative, and sensory properties of kombucha. Cascade hops in the concentrations 0.5 and 2 g/L were added at the onset of tea infusion and to the fresh, unpasteurized kombucha. The addition of hops (particularly at the pre-fermentation stage of production) led to a significant decrease in radical formation in the produced kombucha measured by electron spin resonance spectroscopy (ESR), which correlated with the higher DPPH antiradical activity and the elevated bitter α-acid content. From the sensory perspective, the post-fermentation addition of hops to kombucha resulted in a significantly higher rating of the overall quality. This enhancement was directly associated with heightened bitterness, increased presence of fruity and citrusy aromas, and a simultaneous reduction in the intensities of acetic and tea-related attributes. The data presented in this study are relevant for kombucha producers, who want to deliver a sensory-novel product in combination with an improved oxidative stability.
Key points
•
Hop addition in kombucha production improves the antioxidative activity of the beverage.
•
Hop α-acids display higher antioxidative properties in kombucha than polyphenols.
•
Oxidative stability of kombucha fortified with hops depends on the timing of hops addition.
•
Hop addition enriches the taste and aroma attributes of kombucha.
Journal Article
Terpene Biosynthesis in Glandular Trichomes of Hop
by
He, Ji
,
Wang, Guodong
,
Zhao, Patrick X
in
Alkyl and Aryl Transferases
,
Alkyl and Aryl Transferases - chemistry
,
Alkyl and Aryl Transferases - genetics
2008
Hop (Humulus lupulus L. Cannabaceae) is an economically important crop for the brewing industry, where it is used to impart flavor and aroma to beer, and has also drawn attention in recent years due to its potential pharmaceutical applications. Essential oils (mono- and sesquiterpenes), bitter acids (prenylated polyketides), and prenylflavonoids are the primary phytochemical components that account for these traits, and all accumulate at high concentrations in glandular trichomes of hop cones. To understand the molecular basis for terpene accumulation in hop trichomes, a trichome cDNA library was constructed and 9,816 cleansed expressed sequence tag (EST) sequences were obtained from random sequencing of 16,152 cDNA clones. The ESTs were assembled into 3,619 unigenes (1,101 contigs and 2,518 singletons). Putative functions were assigned to the unigenes based on their homology to annotated sequences in the GenBank database. Two mono- and two sesquiterpene synthases identified from the EST collection were expressed in Escherichia coli. Hop MONOTERPENE SYNTHASE2 formed the linear monterpene myrcene from geranyl pyrophosphate, whereas hop SESQUITERPENE SYNTHASE1 (HlSTS1) formed both caryophyllene and humulene from farnesyl pyrophosphate. Together, these enzymes account for the production of the major terpene constituents of the hop trichomes. HlSTS2 formed the minor sesquiterpene constituent germacrene A, which was converted to β-elemene on chromatography at elevated temperature. We discuss potential functions for other genes expressed at high levels in developing hop trichomes.
Journal Article
Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis
2009
Myrcene, which accounts for 30-50% of the essential oil in hop (Humulus lupulus L.) trichomes, derives from geranyl diphosphate (GPP), the common precursor of monoterpenes. Full-length sequences of heterodimeric GPP synthase small subunit (GPPS.SSU, belonging to the SSU I subfamily) and large subunit (LSU) cDNAs were mined from a hop trichome cDNA library. The SSU was inactive, whereas the LSU produced GPP, farnesyl diphosphate, and geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and isopentenyl diphosphate in vitro. Coexpression of both subunits in Escherichia coli yielded a heterodimeric enzyme exhibiting altered ratios of GPP and GGPP synthase activities and greatly enhanced catalytic efficiency. Transcript analysis suggested that the heterodimeric geranyl(geranyl)diphosphate synthase [G(G)PPS] is involved in myrcene biosynthesis in hop trichomes. The critical role of the conserved CxxxC motif (where \"x\" can be any hydrophobic amino acid residue) in physical interactions between the 2 subunits was demonstrated by using site-directed mutagenesis, and this motif was used in informatic searches to reveal a previously undescribed SSU subfamily (SSU II) present in both angiosperms and gymnosperms. The evolution and physiological roles of SSUs are discussed.
Journal Article
Biotransformation of Xanthohumol by Entomopathogenic Filamentous Fungi
by
Huszcza, Ewa
,
Janeczko, Tomasz
,
Bartmańska, Agnieszka
in
Antioxidants
,
Bioavailability
,
Biocatalysts
2024
Xanthohumol (1) is a major prenylated flavonoid in hops (Humulus lupulus L.) which exhibits a broad spectrum of health-promoting and therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer effects. However, due to its lipophilic nature, it is poorly soluble in water and barely absorbed from the gastrointestinal tract, which greatly limits its therapeutic potential. One method of increasing the solubility of active compounds is their conjugation to polar molecules, such as sugars. Sugar moiety introduced into the flavonoid molecule significantly increases polarity, which results in better water solubility and often leads to greater bioavailability. Entomopathogenic fungi are well known for their ability to catalyze O-glycosylation reactions. Therefore, we investigated the ability of selected entomopathogenic filamentous fungi to biotransform xanthohumol (1). As a result of the experiments, one aglycone (2) and five glycosides (3–7) were obtained. The obtained (2″E)-4″-hydroxyxanthohumol 4′-O-β-D-(4‴-O-methyl)-glucopyranoside (5) has never been described in the literature so far. Interestingly, in addition to the expected glycosylation reactions, the tested fungi also catalyzed chalcone–flavanone cyclization reactions, which demonstrates chalcone isomerase-like activity, an enzyme typically found in plants. All these findings undoubtedly indicate that entomopathogenic filamentous fungi are still an underexploited pool of novel enzymes.
Journal Article
The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.)
by
Kocábek, Tomáš
,
Bříza, Jindřich
,
Duraisamy, Ganesh Selvaraj
in
Agrobacterium
,
Biochemistry
,
Biomedical and Life Sciences
2016
Lupulin glands localized in female hop (
Humulus lupulus
L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor
Hl
WRKY1 that shows significant similarity to
At
WRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor
Hl
WDR1 and silencing suppressor p19,
Hl
WRKY1 is able to enhance transient expression of
gus
gene driven by
Omt
1 and
Chs
_H1 promoters to significant level as compared to 35S promoter of CaMV in
Nicotiana. benthamiana
. Transformation of hop with dual
Agrobacterium
vector bearing
Hl
WRKY1/
Hl
WDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1)
Hl
WRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since
Hl
WRKY1 promotes expression of lupulin-specific
Hl
Myb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of
Hl
WRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Journal Article
Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)
by
Vaitheeswaran, Vinidhra
,
Page, Jonathan E
,
Clark, Shawn M
in
acyl coenzyme A
,
Agriculture
,
alpha acids
2013
Background: Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves.Results: Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial) clades.Conclusions: Our analysis of the hop transcriptome significantly expands the genomic resources available for this agriculturally-important crop. This study provides evidence for the lupulin gland-specific biosynthesis of BCAAs and prenyl diphosphates to provide precursors for the production of bitter acids. The biosynthetic pathway leading to BCAAs in lupulin glands involves the plastidial enzyme, HlBCAT2. The mitochondrial enzyme HlBCAT1 degrades BCAAs as the first step in the catabolic pathway leading to branched chain-acyl-CoAs.
Journal Article
Core RNA Interference Genes Involved in miRNA and Ta-siRNA Biogenesis in Hops and Their Expression Analysis after Challenging with Verticillium nonalfalfae
2021
RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.
Journal Article