Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,123
result(s) for
"Huntingtin Protein - genetics"
Sort by:
Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds
2019
Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)
1
and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington’s disease, an incurable neurodegenerative disorder
2
. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington’s disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract
3
. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.
Compounds that interact with mutant huntingtin and an autophagosomal protein are able to reduce cellular levels of mutant huntingtin by targeting it for autophagic degradation, demonstrating an approach that may have potential for treating proteopathies.
Journal Article
Targeting Huntingtin Expression in Patients with Huntington’s Disease
by
Czech, Christian
,
Craufurd, David
,
Rosser, Anne
in
Adult
,
Antisense oligonucleotides
,
Cerebrospinal fluid
2019
Mutated
HTT
, resulting in mutant huntingtin, causes Huntington’s disease. A phase 1–2a trial of intrathecal delivery of an antisense oligonucleotide targeting
HTT
mRNA in 34 persons with Huntington’s disease showed a dose-dependent reduction of mutant huntingtin in cerebrospinal fluid and no serious adverse events in those who received the drug.
Journal Article
Polyglutamine tracts regulate beclin 1-dependent autophagy
by
Hardenberg, Maarten C.
,
Ricketts, Thomas
,
Menzies, Fiona M.
in
631/80/304
,
631/80/39/2346
,
631/80/474/2289
2017
The polyglutamine domain in ataxin 3, which is expanded in spinocerebellar ataxia type 3, allows normal ataxin 3 to interact with and deubiquitinate beclin 1 and thereby to promote autophagy.
Protein tracts regulate autophagy
Expanded polyglutamine (polyQ) tracts in different proteins are a common feature of many neurodegenerative diseases. Many normal proteins also carry these tracts, although their function remains unclear. David Rubinsztein and colleagues show that polyQ tracts in a normal ataxin protein have a role in the degradative process of autophagy. In this case, the polyQ domain allows ataxin 3 interaction with the autophagy mediator beclin 1. Ataxin 3 can thus deubiquitinate beclin 1, preventing its degradation by the proteasome and allowing it to initiate autophagy. The team not only demonstrate the relevance of their findings to the process of autophagy in neurons, but also show how, under disease conditions, the polyQ tracts in mutant proteins compete with those in ataxin 3 to prevent beclin 1 stabilization and so impair starvation-induced autophagy.
Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington’s disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3)
1
,
2
. Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies
3
. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs
in vivo
as a result of alternative splicing
4
, causes toxicity. Although such mutant proteins are prone to aggregation
5
, toxicity is also associated with soluble forms of the proteins
6
. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs
7
,
8
), which is widely expressed in the brain
9
,
10
. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy
11
. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and
in vivo
in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington’s disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.
Journal Article
Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities
by
Scahill, Rachael I
,
van Roon-Mom, Willeke M C
,
Flower, Michael D
in
Animal cognition
,
Antisense oligonucleotides
,
Atrophy
2022
Huntington's disease is the most frequent autosomal dominant neurodegenerative disorder; however, no disease-modifying interventions are available for patients with this disease. The molecular pathogenesis of Huntington's disease is complex, with toxicity that arises from full-length expanded huntingtin and N-terminal fragments of huntingtin, which are both prone to misfolding due to proteolysis; aberrant intron-1 splicing of the HTT gene; and somatic expansion of the CAG repeat in the HTT gene. Potential interventions for Huntington's disease include therapies targeting huntingtin DNA and RNA, clearance of huntingtin protein, DNA repair pathways, and other treatment strategies targeting inflammation and cell replacement. The early termination of trials of the antisense oligonucleotide tominersen suggest that it is time to reflect on lessons learned, where the field stands now, and the challenges and opportunities for the future.
Journal Article
CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease
2017
Huntington's disease is a neurodegenerative disorder caused by a polyglutamine repeat in the Huntingtin gene (HTT). Although suppressing the expression of mutant HTT (mHTT) has been explored as a therapeutic strategy to treat Huntington's disease, considerable efforts have gone into developing allele-specific suppression of mHTT expression, given that loss of Htt in mice can lead to embryonic lethality. It remains unknown whether depletion of HTT in the adult brain, regardless of its allele, could be a safe therapy. Here, we report that permanent suppression of endogenous mHTT expression in the striatum of mHTT-expressing mice (HD140Q-knockin mice) using CRISPR/Cas9-mediated inactivation effectively depleted HTT aggregates and attenuated early neuropathology. The reduction of mHTT expression in striatal neuronal cells in adult HD140Q-knockin mice did not affect viability, but alleviated motor deficits. Our studies suggest that non-allele-specific CRISPR/Cas9-mediated gene editing could be used to efficiently and permanently eliminate polyglutamine expansion-mediated neuronal toxicity in the adult brain.
Journal Article
Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties
2021
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington’s disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.
The mechanisms underlying Huntingtin protein (Htt) aggregation are not fully understood. Here the authors perform a detailed investigation of the ultrastructural and biochemical properties of huntingtin cytoplasmic and nuclear inclusions, and reveal that they form via distinct mechanisms and exert their toxicity via different pathways.
Journal Article
Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing
2016
Delivery represents a significant barrier to the clinical advancement of oligonucleotide therapeutics for the treatment of neurological disorders, such as Huntington's disease. Small, endogenous vesicles known as exosomes have the potential to act as oligonucleotide delivery vehicles, but robust and scalable methods for loading RNA therapeutic cargo into exosomes are lacking. Here, we show that hydrophobically modified small interfering RNAs (hsiRNAs) efficiently load into exosomes upon co-incubation, without altering vesicle size distribution or integrity. Exosomes loaded with hsiRNAs targeting Huntingtin mRNA were efficiently internalized by mouse primary cortical neurons and promoted dose-dependent silencing of Huntingtin mRNA and protein. Unilateral infusion of hsiRNA-loaded exosomes, but not hsiRNAs alone, into mouse striatum resulted in bilateral oligonucleotide distribution and statistically significant bilateral silencing of up to 35% of Huntingtin mRNA. The broad distribution and efficacy of hsiRNA-loaded exosomes delivered to brain is expected to advance the development of therapies for the treatment of Huntington's disease and other neurodegenerative disorders.
Journal Article
Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome
by
Hoffmann, Victoria
,
Bonifacino, Juan S.
,
Jarnik, Michal
in
Adaptor Protein Complex 4 - chemistry
,
Adaptor Protein Complex 4 - deficiency
,
Adaptor Protein Complex 4 - genetics
2018
The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-β4-μ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as \"AP-4 deficiency syndrome\". In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the μ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder.
Journal Article
Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR
by
Schwieters, Charles D.
,
Kotler, Samuel A.
,
Schmidt, Thomas
in
Amyloid - chemistry
,
Amyloid - genetics
,
Amyloid - ultrastructure
2019
The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q
n
) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington’s disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ₇, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated (≲2%) oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 μs, K
diss ∼ 0.1 M) that goes on to form a tetramer (τex ≲ 25 μs; K
diss ∼ 22 μM), or exchanges with a “nonproductive” dimer that does not oligomerize further (τex ∼ 400 μs; K
diss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3–17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D₂ symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.
Journal Article
A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo
2020
In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Naphthyridine-azaquinolone specifically binds slipped-CAG DNA intermediates, induces contractions of expanded repeats and reduces mutant HTT protein aggregates in cell and animal models of Huntington’s disease.
Journal Article