Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
194 result(s) for "Hybrid data and knowledge model"
Sort by:
A self-learning method with domain knowledge integration for intelligent welding sequence planning
Due to the emergence of mass personalized production, intelligent welding systems must achieve high levels of productivity and flexibility. Therefore, a self-learning welding-task sequencing method that is driven by data and knowledge was developed during this study. First, a minimized dataset of welding sequences, which is required to predict the welding deformation, was designed according to the number and directions of the welds included in the welding tasks. The dataset consisted of a finite number of welding sequences and their corresponding welding deformation data. Then, an algorithm to predict the welding deformation was developed. To improve the interpretability of the results, domain knowledge was integrated into the construction and training processes of a self-learning model. Finally, a case study regarding bracket welding was investigated. With FEA as the benchmark, the maximum relative error of the welding deformation predicted by the algorithm designed to predict the welding deformation was 8%. The maximum deformation of the optimal welding-task sequence output by the self-learning welding-task sequencing method driven by data and knowledge was 32.31% less than that produced by the rule-based reasoning method. The study results demonstrate that the proposed welding-task sequencing method is effective for welding sequence planning of laser welding bracket structures.
Sentiment analysis classification system using hybrid BERT models
Because of the rapid growth of mobile technology, social media has become an essential platform for people to express their views and opinions. Understanding public opinion can help businesses and political institutions make strategic decisions. Considering this, sentiment analysis is critical for understanding the polarity of public opinion. Most social media analysis studies divide sentiment into three categories: positive, negative, and neutral. The proposed model is a machine-learning application of a classification problem trained on three datasets. Recently, the BERT model has demonstrated effectiveness in sentiment analysis. However, the accuracy of sentiment analysis still needs to be improved. We propose four deep learning models based on a combination of BERT with Bidirectional Long ShortTerm Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) algorithms. The study is based on pre-trained word embedding vectors that aid in the model fine-tuning process. The proposed methods are trying to enhance accuracy and check the effect of hybridizing layers of BIGRU and BILSTM on both Bert models (DistilBERT, RoBERTa) for no emoji (text sentiment classifier) and also with emoji cases. The proposed methods were compared to two pre-trained BERT models and seven other models built for the same task using classical machine learning. The proposed architectures with BiGRU layers have the best results.
A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis
There is an exponential growth in textual content generation every day in today's world. In-app messaging such as Telegram and WhatsApp, social media websites such as Instagram and Facebook, e-commerce websites like Amazon, Google searches, news publishing websites, and a variety of additional sources are the possible suppliers. Every instant, all these sources produce massive amounts of text data. The interpretation of such data can help business owners analyze the social outlook of their product, brand, or service and take necessary steps. The development of a consumer review summarization model using Natural Language Processing (NLP) techniques and Long short-term memory (LSTM) to present summarized data and help businesses obtain substantial insights into their consumers' behavior and choices is the topic of this research. A hybrid approach for analyzing sentiments is presented in this paper. The process comprises pre-processing, feature extraction, and sentiment classification. Using NLP techniques, the pre-processing stage eliminates the undesirable data from input text reviews. For extracting the features effectively, a hybrid method comprising review-related features and aspect-related features has been introduced for constructing the distinctive hybrid feature vector corresponding to each review. The sentiment classification is performed using the deep learning classifier LSTM. We experimentally evaluated the proposed model using three different research datasets. The model achieves the average precision, average recall, and average F1-score of 94.46%, 91.63%, and 92.81%, respectively.
Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System
Summary : . Phenomic datasets need to be accessible to the scientific community. Their reanalysis requires tracing relevant information on thousands of plants, sensors and events. . The open-source Phenotyping Hybrid Information System (PHIS) is proposed for plant phenotyping experiments in various categories of installations (field, glasshouse). It unambiguously identifies all objects and traits in an experiment and establishes their relations via ontologies and semantics that apply to both field and controlled conditions. For instance, the genotype is declared for a plant or plot and is associated with all objects related to it. Events such as successive plant positions, anomalies and annotations are associated with objects so they can be easily retrieved. . Its ontology-driven architecture is a powerful tool for integrating and managing data from multiple experiments and platforms, for creating relationships between objects and enriching datasets with knowledge and metadata. It interoperates with external resources via web services, thereby allowing data integration into other systems; for example, modelling platforms or external databases. . It has the potential for rapid diffusion because of its ability to integrate, manage and visualize multi-source and multi-scale data, but also because it is based on 10 yr of trial and error in our groups.
A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam
Air-blast overpressure (AOp) is one of the undesirable effects caused by blasting operations in open-pit mines. This side effect of blasting can seriously undermine surrounding residential structures and living quality. To control and mitigate this situation, this study using artificial neural networks to predict AOp implemented at Deo Nai open-pit coal mine, Vietnam. A total of 146 events of blasting were recorded, of which 80% (118 observations) was used for training and 20% (28 observations) was used for testing. A resampling technique, namely tenfold cross-validation, was performed with three repeats to increase the accuracy of the predictive models. In this paper, three different types of neural networks were developed to predict AOp including multilayer perceptron neural network (MLP neural nets), Bayesian regularized neural networks (BRNN) and hybrid neural fuzzy inference system (HYFIS). Each type was tested with ten model configurations to discover the best performing ones based on comparing standard metrics, including root-mean-square error (RMSE), coefficient of determination ( R 2 ), and a simple ranking method. Eight parameters were considered for these models, including charge per delay, burden, spacing, length of stemming, powder factor, air humidity, and monitoring distance. The results indicated that MLP neural nets model with RMSE = 2.319, R 2  = 0.961 on testing datasets and a total ranking of 12 yielded the most accurate prediction over BRNN and HYFIS models.
Hybrid modelling of water resource recovery facilities: status and opportunities
Mathematical modelling is an indispensable tool to support water resource recovery facility (WRRF) operators and engineers with the ambition of creating a truly circular economy and assuring a sustainable future. Despite the successful application of mechanistic models in the water sector, they show some important limitations and do not fully profit from the increasing digitalisation of systems and processes. Recent advances in data-driven methods have provided options for harnessing the power of Industry 4.0, but they are often limited by the lack of interpretability and extrapolation capabilities. Hybrid modelling (HM) combines these two modelling paradigms and aims to leverage both the rapidly increasing volumes of data collected, as well as the continued pursuit of greater process understanding. Despite the potential of HM in a sector that is undergoing a significant digital and cultural transformation, the application of hybrid models remains vague. This article presents an overview of HM methodologies applied to WRRFs and aims to stimulate the wider adoption and development of HM. We also highlight challenges and research needs for HM design and architecture, good modelling practice, data assurance, and software compatibility. HM is a paradigm for WRRF modelling to transition towards a more resource-efficient, resilient, and sustainable future.
A Review on Fault Detection and Process Diagnostics in Industrial Processes
The main roles of fault detection and diagnosis (FDD) for industrial processes are to make an effective indicator which can identify faulty status of a process and then to take a proper action against a future failure or unfavorable accidents. In order to enhance many process performances (e.g., quality and throughput), FDD has attracted great attention from various industrial sectors. Many traditional FDD techniques have been developed for checking the existence of a trend or pattern in the process or whether a certain process variable behaves normally or not. However, they might fail to produce several hidden characteristics of the process or fail to discover the faults in processes due to underlying process dynamics. In this paper, we present current research and developments of FDD approaches for process monitoring as well as a broad literature review of many useful FDD approaches.
Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles
Rock-socketed piles are commonly used in foundations built in soft ground, and thus, their bearing capacity is a key issue of universal concern in research, design and construction. The accurate prediction of the ultimate bearing capacity ( Q u ) of rock-socketed piles is a difficult task due to the uncertainty surrounding the various factors that affect this capacity. This study was aimed at developing an artificial neural network (ANN) model, as well as a hybrid model based on both particle swarm optimisation (PSO) and ANN, with which to predict the Q u of rock-socketed piles. PSO, a powerful population-based algorithm used in solving continuous and discrete optimisation problems, was here employed as a robust global search algorithm to determine ANN weights and biases and thereby improve model performance. To achieve the study aims, 132 piles socketed in various rock types as part of the Klang Valley Mass Rapid Transit project, Malaysia, were investigated. Based on previous related investigations, parameters with the most influence on Q u were identified and utilised in the modelling procedure of the intelligent systems. After constructing and modelling these systems, selected performance indices including the coefficient of determination ( R 2 ), root-mean-square error, variance account for and total ranking were used to identify the best models and compare the obtained results. This analysis revealed that the hybrid PSO–ANN model offers a higher degree of accuracy compared to conventional ANN for predicting the Q u of rock-socketed piles. However, the developed model would be most useful in the preliminary stages of pile design and should be used with caution.
Hybrid deep learning models for time series forecasting of solar power
Forecasting solar power production accurately is critical for effectively planning and managing renewable energy systems. This paper introduces and investigates novel hybrid deep learning models for solar power forecasting using time series data. The research analyzes the efficacy of various models for capturing the complex patterns present in solar power data. In this study, all of the possible combinations of convolutional neural network (CNN), long short-term memory (LSTM), and transformer (TF) models are experimented. These hybrid models also compared with the single CNN, LSTM and TF models with respect to different kinds of optimizers. Three different evaluation metrics are also employed for performance analysis. Results show that the CNN–LSTM–TF hybrid model outperforms the other models, with a mean absolute error (MAE) of 0.551% when using the Nadam optimizer. However, the TF–LSTM model has relatively low performance, with an MAE of 16.17%, highlighting the difficulties in making reliable predictions of solar power. This result provides valuable insights for optimizing and planning renewable energy systems, highlighting the significance of selecting appropriate models and optimizers for accurate solar power forecasting. This is the first time such a comprehensive work presented that also involves transformer networks in hybrid models for solar power forecasting.
A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting
Backbreak is a rock fracture problem that exceeds the limits of the last row of holes in an explosion operation. Excessive backbreak increases operational costs and also poses a threat to mine safety. In this regard, a new hybrid intelligence approach based on random forest (RF) and particle swarm optimization (PSO) is proposed for predicting backbreak with high accuracy to reduce the unsolicited phenomenon induced by backbreak in open-pit blasting. A data set of 234 samples with six input parameters including special drilling (SD), spacing (S), burden (B), hole length (L), stemming (T) and powder factor (PF) and one output parameter backbreak (BB) is set up in this study. Seven input combinations (one with six parameters, six with five parameters) are built to generate the optimal prediction model. The PSO algorithm is integrated with the RF algorithm to find the optimal hyper-parameters of each model and the fitness function, which is the mean absolute error (MAE) of ten cross-validations. The performance capacities of the optimal models are assessed using MAE, root-mean-square error (RMSE), Pearson correlation coefficient ( R 2 ) and mean absolute percentage error (MAPE). Findings demonstrated that the PSO–RF model combining L–S–B–T–PF with MAE of 0.0132 and 0.0568, RMSE of 0.0811 and 0.1686, R 2 of 0.9990 and 0.9961 and MAPE of 0.0027 and 0.0116 in training and testing phases, respectively, has optimal prediction performance. The optimal PSO–RF models were compared with the classical artificial neural network, RF, genetic programming, support vector machine and convolutional neural network models and show that the PSO–RF model has superiority in predicting backbreak. The Gini index of each input variable has also been calculated in the RF model, which was 31.2 (L), 23.1 (S), 27.4 (B), 36.6 (T), 23.4 (PF) and 16.9 (SD), respectively.