Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
22,053
result(s) for
"Hybrid electric vehicles."
Sort by:
Electric powertrain
by
G. Abas Goodarzi
,
John G. Hayes
in
Electric vehicles
,
Electric vehicles -- Power supply
,
Hybrid electric vehicles
2018,2017
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives.The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA's Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. - Introduces and holistically integrates the key EV powertrain technologies. - Provides a comprehensive overview of existing and emerging automotive solutions. - Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. - Presents many examples of powertrain technologies from leading manufacturers. - Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. - Investigates the environmental motivating factors and impacts of electromobility. - Presents a structured university teaching stream from introductory undergraduate to postgraduate. - Includes real-world problems and assignments of use to design engineers, researchers, and students alike. - Features a companion website with numerous references, problems, solutions, and practical assignments. - Includes introductory material throughout the book for the general scientific reader. - Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase InvertersChapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes , direct to discuss course content or structure.
Modeling and Simulation of Hybrid Electric Vehicles for Sustainable Transportation: Insights into Fuel Savings and Emissions Reduction
by
Nelendran, Pillay
,
Keegan, Govender
,
Oluwafemi, Oni
in
ADVISOR
,
Advisors
,
Air quality management
2024
Most motor vehicles have historically utilized Internal Combustion Engines powered by a fossil fuel. Despite the technological advancements in fuel-efficient engines, further improvements are required to reduce the effect of fuel costs and global warming. This study models and simulates Hybrid Electric Vehicles (HEVs) to evaluate their potential for fuel cost savings and emissions reduction compared to traditional vehicles. Using MATLAB® version R2023a Update 5 (9.14.0.2337262) Simulink version 10.7 (R2023a) and the Advanced Vehicle Simulator (ADVISOR) version 2003-00-r0116, the research examines Series and Parallel HEV configurations. The simulation explores various battery configurations, engine capacities, and power unit models to analyze their impact on energy utilization. The data, collected from the simulations, show significant fuel savings and emissions reduction with HEVs. The Parallel HEV configuration consistently saves fuel with fewer battery modules, while the Series HEV configuration performs better but requires more modules to maintain the system’s State of Charge.
Journal Article
Electric and hybrid vehicles : technologies, modeling, and control : a mechatronic approach
\"An advanced level introductory book covering fundamental aspects, design and dynamics of electric and hybrid electric vehiclesThere is significant demand for an understanding of the fundamentals, technologies, and design of electric and hybrid electric vehicles and their components from researchers, engineers, and graduate students. Although there is a good body of work in the literature, there is still a great need for electric and hybrid vehicle teaching materials. Electric and Hybrid Vehicles: Technologies, Modeling and Control - A Mechatronic Approach is based on the authors' current research in vehicle systems and will include chapters on vehicle propulsion systems, the fundamentals of vehicle dynamics, EV and HEV technologies, chassis systems, steering control systems, and state, parameter and force estimations. The book is highly illustrated, and examples will be given throughout the book based on real applications and challenges in the automotive industry. Designed to help a new generation of engineers needing to master the principles of and further advances in hybrid vehicle technology Includes examples of real applications and challenges in the automotive industry with problems and solutions Takes a mechatronics approach to the study of electric and hybrid electric vehicles, appealing to mechanical and electrical engineering interests Responds to the increase in demand of universities offering courses in newer electric vehicle technologies \"-- Provided by publisher.
Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?
by
Vera, David
,
López-García, Diego A.
,
Torreglosa, Juan P.
in
Algorithms
,
Carbon dioxide
,
control strategy
2020
The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs.
Journal Article
Optimal Design, Simulation and implementation of Solar Photo-voltaic Panels in Hybrid electric vehicles using CATIA V5R19 software integrated with ANSYS 13.0 versions
2020
The primary motive of this research investigation is to explore out by enforcing the sun powered energy in the present hybrid electric vehicles, which signifies precipitous plummet in pollutants and harmful contaminants of environment. Solar powered coercing vehicles are environmental friendly however can't attain to most reliable speed in certain specific time-interval. The operational functioning of two dissimilar fuels collectively may be one of the most advantageous aspects of this novel concept. CATIA V5R19 is appropriate podium for the design outlining of vehicles which this particular research study is aiming. After analyzing the blueprint layout, for computation or estimating of forces, load, internal resisting force and lateral strain performing at the front and rear collisions of structural body-on-frames, ANSYS 13.0 version platform was utilized for software primarily based modeling and simulation. Output statistics or facts figures are premeditated to determine the technical factors of solar powered hybrid vehicles. Solar hybrid electric vehicles have high competencies of an overall recital as its enormous arrangement of traditional fuel engine, possesses high powered electric-vehicle-battery & solar photo-voltaic panel modules.
Journal Article
Hybrid electric power train engineering and technology : modeling, control, and simulation
\"This book provides readers with an academic investigation into HEV power train design using mathematical modeling and simulation of various hybrid electric motors and control systems\"-- Provided by publisher.
A modified model‐free‐adaptive‐control‐based real‐time energy management strategy for plug‐in hybrid electric vehicle
2022
To further improve the energy‐saving potential and robustness of the energy management strategy (EMS) for plug‐in hybrid electric vehicles (PHEVs) in a real‐time application, this paper proposes a modified model‐free‐adaptive‐control‐based (MFAC‐based) EMS to overcome the disadvantages in our previous MFAC‐based EMS. First, the influence of external disturbance on MFAC‐based EMS is discussed, and the results show that both the vehicle velocity and load change have a significant impact on its performance. Second, a modified MFAC‐based real‐time EMS is designed based on history driving data obtained from a repeated route in which a state‐of‐charge (SOC)‐constraint‐based reference SOC planning method is firstly proposed to simultaneously consider the vehicle velocity and changing load. Then, global SOC constraints are incorporated in Pontryagin's minimum principle (PMP) to enhance the adaptive capability of the proposed method. Finally, the optimal solution of PMP (i.e., optimal constant) is deployed as a benchmark, and the performance of the modified MFAC‐based EMS (namely MFAC‐II and MFAC‐III) is in contrast to the previous one (MFAC for short) under various real‐world driving cycles. The results demonstrate that the MFAC‐III has a remarkable improvement in both economic performance and robustness. Particularly, the energy‐saving effectiveness is close to the global optimum one in some driving conditions.
This paper proposes a modified model‐free‐adaptive‐control‐based (MFAC‐based) energy management strategy (EMS) to overcome the disadvantages of our previous MFAC‐based EMS. The modified EMS has a remarkable improvement in both economic performance and robustness for plug‐in hybrid electric vehicles.
Journal Article