Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Hydatellaceae"
Sort by:
Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots
by
Iles, William J. D.
,
Lam, Vivienne K. Y.
,
Sass, Chodon
in
aquatic origin
,
Aquatic plants
,
Araceae
2018
Premise of the Study We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot‐wide divergence times and rates of species diversification. Methods We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. Key Results Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large‐scale accelerations in PACMAD‐BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae‐Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non‐coding regions in identifying and supporting short, deep branches. Conclusions We provide the first resolved, well‐supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome‐scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).
Journal Article
Reconstructing the ancestral angiosperm flower and its initial specializations
2009
Increasingly robust understanding of angiosperm phylogeny allows more secure reconstruction of the flower in the most recent common ancestor of extant angiosperms and its early evolution. The surprising emergence of several extant and fossil taxa with simple flowers near the base of the angiosperms—Chloranthaceae, Ceratophyllum, Hydatellaceae, and the Early Cretaceous fossil Archaefructus (the last three are water plants)—has brought a new twist to this problem. We evaluate early floral evolution in angiosperms by parsimony optimization of morphological characters on phylogenetic trees derived from morphological and molecular data. Our analyses imply that Ceratophyllum may be related to Chloranthaceae, and Archaefructus to either Hydatellaceae or Ceratophyllum. Inferred ancestral features include more than two whorls (or series) of tepals and stamens, stamens with protruding adaxial or lateral pollen sacs, several free, ascidiate carpels closed by secretion, extended stigma, extragynoecial compitum, and one or several ventral pendent ovule(s). The ancestral state in other characters is equivocal: e.g., bisexual vs. unisexual flowers, whorled vs. spiral floral phyllotaxis, presence vs. absence of tepal differentiation, anatropous vs. orthotropous ovules. Our results indicate that the simple flowers of the newly recognized basal groups are reduced rather than primitively simple.
Journal Article
Reproductive development in Trithuria submersa (Hydatellaceae: Nymphaeales): the involvement of AGAMOUS-like genes
by
Babolin, Nicola
,
Baldan, Barbara
,
Offer, Elisabetta
in
Angiosperms
,
Biological evolution
,
Evolutionary genetics
2024
Main conclusionIn the early diverging angiosperm Trithuria submersaTsAG1 and TsAG2 are expressed in different flower organs, including bracts, while TsAG3 is more ovule-specific, probably functioning as a D-type gene.Species of Trithuria, the only genus of the family Hydatellaceae, represent ideal candidates to explore the biology and flower evolution of early diverging angiosperms. The life cycle of T. submersa is generally known, and the “reproductive units” are morphologically well described, but the availability of genetic and developmental data of T. submersa is still scarce. To fill this gap, a transcriptome analysis of the reproductive structures was performed and presented in this work. This analysis provided sequences of MADS-box transcription factors, a gene family known to be involved in flower and fruit development. In situ hybridization experiments on floral buds were performed to describe the spatiotemporal expression patterns of the AGAMOUS genes, revealing the existence of three AG genes with different expression domains in flower organs and in developing ovules. Trithuria may offer important clues to the evolution of reproductive function among early angiosperms and Nymphaeales in particular, and this study aims to broaden relevant knowledge regarding key genes of reproductive development in non-model angiosperms, shaping first flower appearance and evolution.
Journal Article
Plastid genome structure and phylogenomics of Nymphaeales: conserved gene order and new insights into relationships
by
Nauheimer, Lars
,
Borsch, Thomas
,
Gruenstaeudl, Michael
in
Angiosperms
,
Annotations
,
Biomedical and Life Sciences
2017
The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of earlydiverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.
Journal Article
Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree
2007
Although the relationship of angiosperms to other seed plants remains controversial, great progress has been made in identifying the earliest extant splits in flowering-plant phylogeny, with the discovery that the New Caledonian shrub Amborella trichopoda, the water lilies (Nymphaeales), and the woody Austrobaileyales constitute a basal grade of lines that diverged before the main radiation in the clade. By focusing attention on these ancient lines, this finding has re-written our understanding of angiosperm structural and reproductive biology, physiology, ecology and taxonomy. The discovery of a new basal lineage would lead to further re-evaluation of the initial angiosperm radiation, but would also be unexpected, as nearly all of the 460 flowering-plant families have been surveyed in molecular studies. Here we show that Hydatellaceae, a small family of dwarf aquatics that were formerly interpreted as monocots, are instead a highly modified and previously unrecognized ancient lineage of angiosperms. Molecular phylogenetic analyses of multiple plastid genes and associated noncoding regions from the two genera of Hydatellaceae identify this overlooked family as the sister group of Nymphaeales. This surprising result is further corroborated by evidence from the nuclear gene phytochrome C (PHYC), and by numerous morphological characters. This indicates that water lilies are part of a larger lineage that evolved more extreme and diverse modifications for life in an aquatic habitat than previously recognized.
Journal Article
Cryptic species in an ancient flowering-plant lineage (Hydatellaceae, Nymphaeales) revealed by molecular and micromorphological data
by
Remizowa, Margarita V.
,
Marques, Isabel
,
Pellicer, Jaume
in
allopatry
,
cryptic species
,
flora
2019
The flora of the southwestern Australian biodiversity hotspot is rich in endemic species, many of which remain to be discovered or properly described; estimates of species diversity and levels of endemism should take into account the possible occurrence of cryptic species. Here we explore taxonomic diversity in a Western Australian lineage belonging to the primarily Australian genus Trithuria, the sole genus of Hydatellaceae (Nymphaeales). Recent molecular evidence supports the existence of cryptic species in self-pollinating members of section Trithuria. We investigate Western Australian plants currently classified as T. australis s.l., a self-pollinating member of the section Hydatella. Using evidence from microsatellite data (SSRs), an expanded molecular phylogenetic analysis based on four plastid markers, and fruit micromorphology, we suggest that material traditionally classified as T. australis s.l. belongs to at least four species. Two species occur in the northern part of the distribution range of the group (31° S to 33°27′ S), and two in the southern part (33°27′ S to 35° S). Each northern species has distinctive fruit micromorphology not recorded in other members of the genus. The two southern species are well characterized by molecular characters and seem to be allopatric, but lack obvious morphological differences from each other. We describe one of the northern species as T. fitzgeraldii sp. nov. However, clarifying the names of the other three species is currently problematic as T. australis and another available name are based on collections made 117 years ago, from localities distant from any subsequent records of Hydatellaceae. Based on genome size estimations, we also demonstrate two ploidy levels in the T. australis complex. Our study supports the view that species diversity in Hydatellaceae is strongly underestimated.
Journal Article
Pollen structure and development in Nymphaeales: Insights into character evolution in an ancient angiosperm lineage
by
Cooper, Ranessa L.
,
Schneider, Edward L.
,
Taylor, Mackenzie L.
in
Aquatic plants
,
Biological Evolution
,
Botany
2015
PREMISE OF THE STUDY: A knowledge of pollen characters in early-diverging angiosperm lineages is essential for understanding pollen evolution and the role of pollen in angiosperm diversification. In this paper, we report and synthesize data on mature pollen and pollen ontogeny from all genera of Nymphaeales within a comparative, phylogenetic context and consider pollen evolution in this early-diverging angiosperm lineage. We describe mature pollen characters for Euryale, Barclaya, and Nymphaea ondinea, taxa for which little to no structural data exist. METHODS: We studied mature pollen for all nymphaealean genera using light, scanning electron, and transmission electron microscopy. We reviewed published reports of nymphaealean pollen to provide a comprehensive discussion of pollen characters in water lilies. KEY RESULTS: Nymphaeales exhibit diversity in key pollen characters, including dispersal unit size, ornamentation, aperture morphology, and tapetùm type. All Nymphaeales pollen are tectate-columellate, exhibiting one of two distinct patterns of infratectal ultrastructure—a thick infratectal space with robust columellae or a thin infratectal space with thin columellae. All genera have pollen with a lamellate endexine that becomes compressed in the proximal, but not distal wall. This endexine ultrastructure supports the operculate hypothesis for aperture origin. Nymphaeaceae pollen exhibit a membranous granular layer, which is a synapomorphy of the family. CONCLUSIONS: Variation in pollen characters indicates that significant potential for lability in pollen development was present in Nymphaeales at the time of its divergence from the rest of angiosperms. Structural and ontogenetic data are essential for interpreting pollen characters, such as infratectum and endexine ultrastructure in Nymphaeales.
Journal Article
Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage
by
Rudall, Paula J
,
Remizowa, Margarita V
,
Conran, John G
in
Anatomy and Morphology
,
angiosperm
,
Angiosperms
2007
The family Hydatellaceae was recently reassigned to the early-divergent angiosperm order Nymphaeales rather than the monocot order Poales. This dramatic taxonomic adjustment allows comparison with other early-divergent angiosperms, both extant and extinct. Hydatellaceae possess some monocot-like features that could represent adaptations to an aquatic habit. Ecophysiological parallels can also be drawn from fossil taxa that are known from small achene-like diaspores, as in Hydatellaceae. Reproductive units of Hydatellaceae consist of perianthlike bracts enclosing several pistils and/or stamens. In species with bisexual reproductive units, a single unit resembles an \"inside-out\" flower, in which stamens are surrounded by carpels that are initiated centrifugally. Furthermore, involucre development in Trithuria submersa, with delayed growth of second whorl bracts, resembles similar delayed development of the second perianth whorl in CABOMBA: Several hypotheses on the homologies of reproductive units in Hydatellaceae are explored. Currently, the most plausible interpretation is that each reproductive unit represents an aggregation of reduced unisexual apetalous flowers, which are thus very different from flowers of Nymphaeales. Each pistil in Hydatellaceae is morphologically and developmentally consistent with a solitary ascidiate carpel. However, ascidiate carpel development, consistent with placement in Nymphaeales, is closely similar to pseudomonomerous pistil development as in Poaes.
Journal Article
Transcriptome‐derived evidence supports recent polyploidization and a major phylogeographic division in Trithuria submersa (Hydatellaceae, Nymphaeales)
2016
Relatively little is known about species‐level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole‐genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water‐lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole‐genome duplication, and applied transcriptome‐derived microsatellite (expressed‐sequence tag simple‐sequence repeat (EST‐SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome‐based Kₛ plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans‐Nullarbor biogeographic boundary. Patterns of ‘allelic’ variation (no more than two variants per EST‐SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria.
Journal Article
Floral variation and floral genetics in basal angiosperms
by
Soltis, Douglas E
,
Soltis, Pamela S
,
Brockington, Samuel F
in
ABC model
,
Amborella
,
Angiosperms
2009
Recent advances in phylogeny reconstruction and floral genetics set the stage for new investigations of the origin and diversification of the flower. We review the current state of angiosperm phylogeny, with an emphasis on basal lineages. With the surprising inclusion of Hydatellaceae with Nymphaeales, recent studies support the topology of Amborella sister to all other extant angiosperms, with Nymphaeales and then Austrobaileyales as subsequent sisters to all remaining angiosperms. Notable modifications from most recent analyses are the sister relationships of Chloranthaceae with the magnoliids and of Ceratophyllaceae with eudicots. We review \"trends\" in floral morphology and contrast historical, intuitive interpretations with explicit character-state reconstructions using molecular-based trees, focusing on (1) the size, number, and organization of floral organs; (2) the evolution of the perianth; (3) floral symmetry; and (4) floral synorganization. We provide summaries of those genes known to affect floral features that contribute to much of floral diversity. Although most floral genes have not been investigated outside of a few model systems, sufficient information is emerging to identify candidate genes for testing specific hypotheses in nonmodel plants. We conclude with a set of evo-devo case studies in which floral genetics have been linked to variation in floral morphology.
Journal Article