Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,704 result(s) for "Hydroxamic Acids - metabolism"
Sort by:
A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function
Purpose This study assessed the pharmacokinetics and safety of oral panobinostat and its metabolite BJB432 in patients with advanced solid tumors and normal to severely impaired renal function. Methods Patients with varying degrees of renal impairment, defined by their 24-h baseline urine creatinine clearance (as normal, mild, moderate or severe), received a single oral dose of 30 mg panobinostat. Serial plasma samples were collected pre-dose and up to 96-h post-dose. Serial urine samples were collected for 24-h post-dose. Following the serial PK sampling, patients received 30 mg oral panobinostat thrice weekly for as long as the patient had benefit. Pharmacokinetic parameters were derived using non-compartmental analysis. Results Thirty-seven patients were enrolled, and median age was 64 (range 40–81) years. Eleven patients had normal renal function; 10, 10, and 6 patients had mild, moderate, and severe renal impairment, respectively. Geometric means of AUC 0–∞ in the normal, mild, moderate, and severe groups were 224.5, 144.3, 223.1, and 131.7 ng h/mL, respectively. Geometric mean ratio of BJB432 to parent drug plasma AUC 0–∞ was 0.64 in the normal group and increased to 0.81, 1.13, and 1.20 in the mild, moderate, and severe groups, respectively. The fraction excreted as unchanged panobinostat was small (<2 %), with a large variability. The renal clearance of panobinostat and tolerability was similar across all four groups. Conclusion Systemic exposure to panobinostat did not increase with severity of renal impairment, and the drug was tolerated equally; thus, patients with renal impairment do not require starting dose adjustments.
Reducing the Fitness Cost of Antibiotic Resistance by Amplification of Initiator tRNA Genes
Deformylase inhibitors belong to a novel antibiotic class that targets peptide deformylase, a bacterial enzyme that removes the formyl group from N-terminal methionine in nascent polypeptides. Using the bacterium Salmonella enterica, we isolated mutants with resistance toward the peptide deformylase inhibitor actinonin. Resistance mutations were identified in two genes that are required for the formylation of methionyl (Met) initiator tRNA$(tRNAi)^{fMet}$: the fmt gene encoding the enzyme methionyl-tRNA formyltransferase and the folD gene encoding the bifunctional enzyme methylenetetrahydrofolate-dehydrogenase and-cyclohydrolase. In the absence of antibiotic, these resistance mutations conferred a fitness cost that was manifested as a reduced growth rate in laboratory medium and in mice. By serially passaging the low-fitness mutants in growth medium without antibiotic, the fitness costs could be partly ameliorated either by intragenic mutations in the fmt/folD genes or by extragenic compensatory mutations. Of the extragenically compensated fmt mutants, approximately one-third carried amplifications of the identical, tandemly repeated metZ and metW genes, encoding tRNAi. The increase in metZW gene copy number varied from 5-to 40-fold and was accompanied by a similar increase in tRNAi levels. The rise in tRNAi level compensated for the lack of methionyl-tRNA formyltransferase activity and allowed translation initiation to proceed with nonformylated methionyl tRNAi. Amplified units varied in size from 1.9 to 94 kbp. Suppression of deleterious mutations by gene amplification may be involved in the evolution of new gene functions.
A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling
The use of gene expression signatures to classify compounds, identify efficacy or toxicity, and differentiate close analogs relies on the sensitivity of the method to identify modulated genes. We used a novel ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq®, to determine whether previously unreported compound-responsive genes could be identified and incorporated into a broad but specific compound signature. TempO-Seq exhibits 99.6% specificity, single cell sensitivity, and excellent correlation with fold differences measured by RNA-Seq (R2 = 0.9) for 20,629 targets. Unlike many expression assays, TempO-Seq does not require RNA purification, cDNA synthesis, or capture of targeted RNA, and lacks a 3' end bias. To investigate the sensitivity of the TempO-Seq assay to identify significantly modulated compound-responsive genes, we derived whole transcriptome profiles from MCF-7 cells treated with the histone deacetylase inhibitor Trichostatin A (TSA) and identified more than 9,000 differentially expressed genes. The TSA profile for MCF-7 cells overlapped those for HL-60 and PC-3 cells in the Connectivity Map (cMAP) database, suggesting a common TSA-specific expression profile independent of baseline gene expression. A 43-gene cell-independent TSA signature was extracted from cMAP and confirmed in TempO-Seq MCF-7 data. Additional genes that were not previously reported to be TSA responsive in the cMAP database were also identified. TSA treatment of 5 cell types revealed 1,136 differentially expressed genes in common, including 785 genes not previously reported to be TSA responsive. We conclude that TSA induces a specific expression signature that is consistent across widely different cell types, that this signature contains genes not previously associated with TSA responses, and that TempO-Seq provides the sensitive differential expression detection needed to define such compound-specific, cell-independent, changes in expression.
Nucleic acid binding affinity and antioxidant activity of N-m-Tolyl-4-Chlorophenoxyacetohydroxamicacid
Hydroxamic acids represent a group of weak organic acids, both naturally occurring and synthetically derived, characterized by the general formula RC(= O)N(R’OH). In this study, we investigated the binding behavior of N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) through a combination of techniques including UV–visible spectroscopy, fluorescence emission analysis, viscometry, and computational simulations using AutoDock4 software. Our findings reveal that the mode of binding between the compound and the nucleic acids is consistent with intercalation. Competitive binding experiments demonstrated that the complex competes effectively with ethidium bromide (EB) for binding to ct-DNA/t-RNA, displacing EB from its binding sites. Additionally, the introduction of the compound into the DNA-EB system resulted in a quenching of fluorescence emission peaks. Analysis of absorption spectra indicated a red shift and hypochromic shift when the compound interacted with DNA, further supporting the intercalative binding mode. The calculated binding constant (K b ) value for the compound is 6.62 × 10 4  M −1 and 5.40 × 10 3  M −1 indicating a strong interaction with ct-DNA and t-RNA respectively. We determined the Stern–Volmer constants for ct-DNA and t-RNA as 9.96 × 10 4  M −1 and 8.13 × 10 5  M −1 , respectively. The binding free energy values for ct-DNA/t-RNA were calculated to be − 3.741 × 10 7 and − 5.425 × 10 8  kcal/mol, respectively. Viscometric studies corroborated the UV results, showing a continuous increase in relative viscosity of ct-DNA/t-RNA solutions with the addition of the optimal hydroxamic acid concentration. Furthermore, we assessed the antioxidant activity of the compound using DPPH-radical scavenging and β-carotene linoleic acid assays. Gel electrophoresis results demonstrated the compound's remarkable efficacy in preventing DNA damage. Collectively, all experimental evidence supports the conclusion that N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid binds to ct-DNA/t-RNA through an intercalative mechanism, which is consistent with our molecular docking simulations.
Degradation of catecholate, hydroxamate, and carboxylate model siderophores by extracellular enzymes
Siderophores are low-molecular weight biomolecules with a high affinity for ferric iron (Fe III ) that can impact plant and microbial growth. Although their formation and biology have been investigated in detail, little is known about the environmental fate of siderophores, including their potential reactions with common degradative enzymes, which may influence or hinder the ability to promote the uptake of Fe for plants and microbes. In this study, we examined the ability of the model extracellular enzymes phenol oxidase, protease, and horseradish peroxidase to degrade apo siderophores and Fe III siderophore complexes. The siderophores were selected to represent the natural diversity of siderophore structures: the bacterial triscatecholamide siderophore protochelin; the bacterial trishydroxamate siderophore desferrioxamine B (DFOB); and the synthetic carboxylate phytosiderophore analog proline-2′-deoxymugineic acid (PDMA). In general, apo siderophores were more susceptible to degradation, with some protection of the siderophore provided by Fe III complexation. Phenol oxidase reacted rapidly with protochelin, leading to 90% degradation of protochelin after 24 hours of reaction, which could be modeled by Michaelis-Menten kinetics. Peroxidases in the presence of H 2 O 2 were also effective in the degradation of protochelin (80%) and, to a lesser extent, reacted with DFOB, leading to ~5% degradation. Control experiments showed that protochelin oxidation is caused primarily by H 2 O 2 alone, even in the absence of the peroxidase enzyme. When bound to Fe III , the degradation of protochelin by phenol oxidase and DFOB degradation by peroxidase was reduced by ~50% and ~3%, respectively. No significant reaction was detected between PDMA and any of the three enzymes, supporting its proposed use for plant Fe fertilization.
Desferrioxamine biosynthesis: diverse hydroxamate assembly by substrate-tolerant acyl transferase DesC
Hydroxamate groups play key roles in the biological function of diverse natural products. Important examples include trichostatin A, which inhibits histone deacetylases via coordination of the active site zinc(II) ion with a hydroxamate group, and the desferrioxamines, which use three hydroxamate groups to chelate ferric iron. Desferrioxamine biosynthesis in Streptomyces species involves the DesD-catalysed condensation of various N-acylated derivatives of N-hydroxycadaverine with two molecules of N-succinyl-N-hydroxycadaverine to form a range of linear and macrocyclic tris-hydroxamates. However, the mechanism for assembly of the various N-acyl-N-hydroxycadaverine substrates of DesD from N-hydroxycadaverine has until now been unclear. Here we show that the desC gene of Streptomyces coelicolor encodes the acyl transferase responsible for this process. DesC catalyses the N-acylation of N-hydroxycadaverine with acetyl, succinyl and myristoyl-CoA, accounting for the diverse array of desferrioxamines produced by S. coelicolor. The X-ray crystal structure of DesE, the ferrioxamine lipoprotein receptor, in complex with ferrioxamine B (which is derived from two units of N-succinyl-N-hydroxycadaverine and one of N-acetyl-N-hydroxycadaverine) was also determined. This showed that the acetyl group of ferrioxamine B is solvent exposed, suggesting that the corresponding acyl group in longer chain congeners can protrude from the binding pocket, providing insights into their likely function. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology'. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.
A distal regulatory region of a class I human histone deacetylase
Histone deacetylases (HDACs) are key enzymes in epigenetics and important drug targets in cancer biology. Whilst it has been established that HDACs regulate many cellular processes, far less is known about the regulation of these enzymes themselves. Here, we show that HDAC8 is allosterically regulated by shifts in populations between exchanging states. An inactive state is identified, which is stabilised by a range of mutations and resembles a sparsely-populated state in equilibrium with active HDAC8. Computational models show that the inactive and active states differ by small changes in a regulatory region that extends up to 28 Å from the active site. The regulatory allosteric region identified here in HDAC8 corresponds to regions in other class I HDACs known to bind regulators, thus suggesting a general mechanism. The presented results pave the way for the development of allosteric HDAC inhibitors and regulators to improve the therapy for several disease states. Human Histone Deacetylases (HDACs) regulate gene expression and are important drug targets. Here, the authors combine NMR measurements, enzymatic assays and molecular dynamics simulations and show that HDAC8 samples a catalytically active and an inactive state and further demonstrate that mutations and ligand binding alter the populations of the two states, which is of interest for inhibitor design.
Diversity in the Interaction of Amino Acid- and Peptide-Based Hydroxamic Acids with Some Platinum Group Metals in Solution
Complexes that incorporate both ligand(s) and metal(s) exhibiting cytotoxic activity can especially be interesting to develop multifunctional drug molecules with desired activities. In this review, the limited number of solution results collected in our laboratory on the complexes of Pd(II) and two other platinum group metals—the half-sandwich type, [(η6-p-cym)Ru(H2O)3]2+, and [(η5-Cp*)Rh(H2O)3]2+—with hydroxamic acid derivatives of three amino acids, two imidazole analogues, and four small peptides are summarized and evaluated. Unlike the limited number of coordination sites of these metal ions (four and three for Pd(II) and the organometallic cations, respectively), the ligands discussed here offer a relatively high number of donor atoms as well as variation in their position within the ligands, resulting in a large versatility of the likely coordination modes. The review, besides presenting the solution equilibrium results, also discusses the main factors, such as (N,N) versus (O,O) chelate; size of chelate; amino-N versus imidazole-N; primary versus secondary hydroxamic function; differences between hydrolytic ability of the metal ions studied; and hydrolysis of the coordinated peptide hydroxamic acids in their Pd(II) complexes, which all determine the coordination modes present in the complexes formed in measurable concentrations in these systems. The options for the quantitative evaluation of metal binding effectivity and selectivity of the various ligands and the comparison with each other by using solution equilibrium data are also discussed.
Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae
Background Klebsiella pneumoniae is a recognised agent of multidrug-resistant (MDR) healthcare-associated infections; however, individual strains vary in their virulence potential due to the presence of mobile accessory genes. In particular, gene clusters encoding the biosynthesis of siderophores aerobactin ( iuc ) and salmochelin ( iro ) are associated with invasive disease and are common amongst hypervirulent K . pneumoniae clones that cause severe community-associated infections such as liver abscess and pneumonia. Concerningly, iuc has also been reported in MDR strains in the hospital setting, where it was associated with increased mortality, highlighting the need to understand, detect and track the mobility of these virulence loci in the K . pneumoniae population. Methods Here, we examined the genetic diversity, distribution and mobilisation of iuc and iro loci amongst 2503 K . pneumoniae genomes using comparative genomics approaches and developed tools for tracking them via genomic surveillance. Results Iro and iuc were detected at low prevalence (< 10%). Considerable genetic diversity was observed, resolving into five iro and six iuc lineages that show distinct patterns of mobilisation and dissemination in the K . pneumoniae population. The major burden of iuc and iro amongst the genomes analysed was due to two linked lineages ( iuc1 / iro1 74% and iuc2 / iro2 14%), each carried by a distinct non-self-transmissible IncFIB K virulence plasmid type that we designate KpVP-1 and KpVP-2. These dominant types also carry hypermucoidy ( rmpA ) determinants and include all previously described virulence plasmids of K . pneumoniae . The other iuc and iro lineages were associated with diverse plasmids, including some carrying IncFII conjugative transfer regions and some imported from Escherichia coli ; the exceptions were iro3 (mobilised by ICE Kp1 ) and iuc4 (fixed in the chromosome of K . pneumoniae subspecies rhinoscleromatis ). Iro / iuc mobile genetic elements (MGEs) appear to be stably maintained at high frequency within known hypervirulent strains (ST23, ST86, etc.) but were also detected at low prevalence in others such as MDR strain ST258. Conclusions Iuc and iro are mobilised in K . pneumoniae via a limited number of MGEs. This study provides a framework for identifying and tracking these important virulence loci, which will be important for genomic surveillance efforts including monitoring for the emergence of hypervirulent MDR K . pneumoniae strains.
Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC)
Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.