Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
750
result(s) for
"Hydrozoa"
Sort by:
Pattern regulation in a regenerating jellyfish
by
Eichelbrenner, Jeanne
,
Leclère, Lucas
,
Steger, Julia
in
Analysis
,
Animals
,
Body Patterning - physiology
2020
Jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around ‘hubs’ which serve as positional landmarks. Stabilization of these hubs, and associated expression of Wnt6 , depends on the configuration of the adjoining muscle fiber ‘spokes’. Stabilized hubs presage the site of the manubrium blastema, whose growth is Wnt/β-catenin dependent and fueled by both cell proliferation and long-range cell recruitment. Manubrium morphogenesis is modulated by its connections with the gastrovascular canal system. We conclude that body patterning in regenerating jellyfish emerges mainly from local interactions, triggered and directed by the remodeling process.
Journal Article
A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia
2018
Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family. Many animals living in the sea reproduce by releasing sperm and egg cells at the same time into the surrounding water. Animals often use changes in ambient light at dawn and dusk as reliable daily cues to coordinate this spawning behavior between individuals. For example, jellyfish of the species Clytia hemisphaerica, which can easily be raised in the laboratory, spawn exactly two hours after the light comes on. Researchers recently discovered that spawning in Clytia and other related jellyfish species is coordinated by a hormone called ‘oocyte maturation-inducing hormone’, or MIH for short. This hormone is produced by a cell layer that surrounds the immature eggs and sperm within each reproductive organ, and is secreted in response to light cues. It then diffuses both inside and outside of the jellyfish, and triggers the production of mature eggs and sperm, followed by their release into the ocean. However, until now it was not known which cells and molecules are responsible for detecting light to initiate the secretion of MIH. Quiroga Artigas et al. – including some of the researchers involved in the MIH work – now discovered that a single specialised cell type in the reproductive organs of Clytia responds to light and secretes MIH. These cells contain a light-sensitive protein called Opsin9, which is closely related to the opsin proteins in the human eye well known for their role in vision. When Opsin9 was experimentally mutated, Clytia cells could not secrete MIH in response to light, and the jellyfish failed to spawn. This opsin protein is thus necessary to detect light in order to trigger spawning in jellyfish. A next step will be to examine and compare whether other proteins of the opsin family and hormones related to MIH also regulate spawning in other marine animals. This could have practical benefits for raising marine animals in aquariums and as food resources, and in initiatives to protect the environment. More widely, these findings could help unravel how sexual reproduction has evolved within the animal kingdom.
Journal Article
Phylogenomic Analyses Support Traditional Relationships within Cnidaria
2015
Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.
Journal Article
Local fitness landscape of the green fluorescent protein
2016
Comprehensive genotype–phenotype mapping of the green fluorescent protein shows that the local fitness peak is narrow, shaped by a high prevalence of epistatic interactions, providing for the loss of fluorescence when the joint effect of mutations exceeds a threshold.
Genotype to phenotype mapping of a model protein
Fyodor Kondrashov and colleagues report comprehensive genotype–phenotype mapping across an entire protein, based on analysis of the fitness landscape of green fluorescent protein (GFP) using a molecular barcoding and sequencing approach. They find that the fitness landscape is characterized by locally narrow regions, combined with a high prevalence of epistatic interactions, providing for the loss of fluorescence when the joint effect of mutations exceeds a threshold.
Fitness landscapes
1
,
2
depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology
2
,
3
,
4
,
5
,
6
,
7
, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness
2
,
4
, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence
2
,
5
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
or in different sequences
2
,
3
,
5
,
16
,
17
,
18
. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here we visualize an extensive region of the local fitness landscape of the green fluorescent protein from
Aequorea victoria
(avGFP) by measuring the native function (fluorescence) of tens of thousands of derivative genotypes of avGFP. We show that the fitness landscape of avGFP is narrow, with 3/4 of the derivatives with a single mutation showing reduced fluorescence and half of the derivatives with four mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations and mostly occurred through the cumulative effect of slightly deleterious mutations causing a threshold-like decrease in protein stability and a concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for several fields including molecular evolution, population genetics and protein design.
Journal Article
Aequorea’s secrets revealed: New fluorescent proteins with unique properties for bioimaging and biosensing
by
Bindels, Daphne S.
,
Schultz, Darrin T.
,
Adams, Stephen R.
in
Animals
,
Biochemistry, Molecular Biology
,
Biology and Life Sciences
2020
Using mRNA sequencing and de novo transcriptome assembly, we identified, cloned, and characterized 9 previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from A . victoria green fluorescent protein (avGFP). Among these FPs are the brightest green fluorescent protein (GFP) homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including 2 that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.
Journal Article
Cassiopea xamachana microbiome across anatomy, development, and geography
by
Ohdera, Aki
,
Kerwin, Allison H.
,
Mammone, Marta
in
Animals
,
Bacteria
,
Bacteria - classification
2025
The upside-down jellyfish holobiont, Cassiopea xamachana , is a useful model system for tri-partite interactions between the cnidarian host, the photosymbiont, and the bacterial microbiome. While the interaction between the host and photosymbiont has been well studied, less is understood of the associated bacterial community. To date, the bacterial microbiome of wild C. xamachana has remained largely uncharacterized. Thus, wild medusae (n=6) and larvae (n=3) were collected from two sites in the Florida Keys. Bacterial community composition was characterized via amplicon sequencing of the 16S rRNA gene V4 region. The medusa bacterial community was dominated by members of the Alphaproteobacteria and Gammaproteobacteria, while Planctomycetota, Actinomycetota, Bacteroidota, and Bacillota were also present, among others. Community composition was consistent between locations and across medusa structures (oral arm, bell, and gonad). The larval bacterial community clustered apart from the medusa community in beta diversity analysis and was characterized by the presence of several Pseudomonadota taxa that were not present in the medusa, including the Alteromonas , Pseudoalteromonas , and Thalassobius genera. A bacterial isolate library encompassing much of the amplicon sequencing diversity was also developed and tested via metabolic assays in a separate culture-dependent analysis of isolates from medusa bells, oral arms, and laplets. Most characteristics were not correlated with host sex or medusa structure, but gelatinase production was more common in laplet isolates, while lactose fermentation was more common in female oral arm isolates. The Endozoicomonas genus was dominant in both amplicon sequencing and in our isolate library, and was equally prevalent across all medusa structures and in both sexes. Understanding the bacterial component of the C. xamachana holobiont will allow us to further develop this important model cnidarian holobiont.
Journal Article
Reassessment of Morphological Diagnostic Characters and Species Boundaries Requires Taxonomical Changes for the Genus Orthopyxis L. Agassiz, 1862 (Campanulariidae, Hydrozoa) and Some Related Campanulariids
2015
The genus Orthopyxis is widely known for its morphological variability, making species identification particularly difficult. A number of nominal species have been recorded in the southwestern Atlantic, although most of these records are doubtful. The goal of this study was to infer species boundaries in the genus Orthopyxis from the southwestern Atlantic using an integrative approach. Intergeneric limits were also tested using comparisons with specimens of the genus Campanularia. We performed DNA analyses using the mitochondrial genes 16S and COI and the nuclear ITS1 and ITS2 regions. Orthopyxis was monophyletic in maximum likelihood analyses using the combined dataset and in analyses with 16S alone. Four lineages of Orthopyxis were retrieved for all analyses, corresponding morphologically to the species Orthopyxis sargassicola (previously known in the area), Orthopyxis crenata (first recorded for the southwestern Atlantic), Orthopyxis caliculata (= Orthopyxis minuta Vannucci, 1949 and considered a synonym of O. integra by some authors), and Orthopyxis mianzani sp. nov. A re-evaluation of the traditional morphological diagnostic characters, guided by our molecular analyses, revealed that O. integra does not occur in the study area, and O. caliculata is the correct identification of one of the lineages occurring in this region, corroborating the validity of that species. Orthopyxis mianzani sp. nov. resembles O. caliculata with respect to gonothecae morphology and a smooth hydrothecae rim, although it shows significant differences for other characters, such as perisarc thickness, which has traditionally been thought to have wide intraspecific variation. The species O. sargassicola is morphologically similar to O. crenata, although they differ in gonothecae morphology, and these species can only be reliably identified when this structure is present.
Journal Article
Diversity and life-cycle analysis of Pacific Ocean zooplankton by videomicroscopy and DNA barcoding: Hydrozoa
2019
Most, but not all cnidarian species in the class Hydrozoa have a life cycle in which a colonial, asexually reproducing hydroid phase alternates with a free-swimming, sexually reproducing medusa phase. They are not well known, in part because many of them are microscopic, at least in the medusa phase. Matching the two phases has previously required rearing of the organism from one phase to another, which has not often been possible. Here we show that DNA barcoding makes it possible to easily link life-cycle phases without the need for laboratory rearing. Hydrozoan medusae were collected by zooplankton tows in Newport Bay and the Pacific Ocean near Newport Beach, California, and hydroid colonies were collected from solid substrates in the same areas. Specimens were documented by videomicroscopy, preserved in ethanol, and sent to the Canadian Centre for DNA Barcoding at the University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. In the order Anthoathecata (athecate hydroids), DNA barcoding allowed for the discrimination between the medusae of eight putative species of Bougainvillia, and the hydroid stages were documented for two of these. The medusae of three putative species of Amphinema were identified, and the hydroid stages were identified for two of them. DNA barcodes were obtained from medusae of one species of Cladonema, one adult of the by-the wind Sailor, Velella velella, five putative species of Corymorpha with the matching hydroid phase for one; and Coryne eximia, Turritopsis dohrnii and Turritopsis nutricula with the corresponding hydroid phases. The actinula larvae and hydroid for the pink-hearted hydroid Ectopleura crocea were identified and linked by DNA barcoding. In the order Leptothecata (thecate hydroids) medusae were identified for Clytia elsaeoswaldae, Clytia gracilis and Clytia sp. 701 AC and matched with the hydroid phases for the latter two species. Medusae were matched with the hydroid phases for two species of Obelia (including O. dichotoma) and Eucheilota bakeri. Obelia geniculata was collected as a single hydroid. DNA barcodes were obtained for hydroids of Orthopyxis everta and three other species of Orthopyxis. One member of the family Solmarisidae, representing the order Narcomedusae, and one member (Liriope tetraphylla) of the order Trachymedusae were recognized as medusae. The results show the utility of DNA barcoding for matching life-cycle stages as well as for documenting the diversity of this class of organisms.
Journal Article
Physalia gonodendra are not yet sexually mature when released
2024
The blue bottle genus
Physalia
is one of the well-known siphonophore belonging to the Cnidaria, Hydrozoa.
Physalia
is also known as a ferocious predator, occasionally stinging and fatally wounding humans, but key details of its life cycle and reproductive biology are unclear.
Physalia
have separate sexes, and sexual reproduction occurs through the release of complex structures called gonodendra that contain many gonophores that will release either eggs or sperm. It is not known how mature the gonophores are when the gonodendra are released. In this study, we aim to characterize germ cell maturation by conducting histological, cytological, and gene expression analyses of the gonodendron of
Physalia utriculus
from Japan. We found a layered structure of the gonophore, consistent with other studies; however, gametes were not found even in gonophores that were within the released gonodendra. Moreover, haploid cells were not detected by flow cytometry. Analysis of the expression of putative germ cell marker and meiosis related genes showed high expression in the gonophore. These results strongly suggest that germ cells do not mature until after gonodendra are released. These findings provide valuable insights into the reproductive ecology and life cycle of
Physalia
.
Journal Article
Medusozoan Phylogeny and Character Evolution Clarified by New Large and Small Subunit rDNA Data and an Assessment of the Utility of Phylogenetic Mixture Models
by
Jankowski, Thomas
,
Schierwater, Bernd
,
Collins, Tim
in
Animals
,
Biological Evolution
,
Biological taxonomies
2006
A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade—named Acraspeda—with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria.
Journal Article