Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
119 result(s) for "Hyperlipoproteinemia Type II - pathology"
Sort by:
Population genetic screening efficiently identifies carriers of autosomal dominant diseases
Three inherited autosomal dominant conditions— BRCA -related hereditary breast and ovarian cancer (HBOC), Lynch syndrome (LS) and familial hypercholesterolemia (FH)—have been termed the Centers for Disease Control and Prevention Tier 1 (CDCT1) genetic conditions, for which early identification and intervention have a meaningful potential for clinical actionability and a positive impact on public health 1 . In typical medical practice, genetic testing for these conditions is based on personal or family history, ethnic background or other demographic characteristics 2 . In this study of a cohort of 26,906 participants in the Healthy Nevada Project (HNP), we first evaluated whether population screening could efficiently identify carriers of these genetic conditions and, second, we evaluated the impact of genetic risk on health outcomes for these participants. We found a 1.33% combined carrier rate for pathogenic and likely pathogenic (P/LP) genetic variants for HBOC, LS and FH. Of these carriers, 21.9% of participants had clinically relevant disease, among whom 70% had been diagnosed with relevant disease before age 65. Moreover, 90% of the risk carriers had not been previously identified, and less than 19.8% of these had documentation in their medical records of inherited genetic disease risk, including family history. In a direct follow-up survey with all carriers, only 25.2% of individuals reported a family history of relevant disease. Our experience with the HNP suggests that genetic screening in patients could identify at-risk carriers, who would not be otherwise identified in routine care. Screening for a set of autosomal-dominant genetic conditions in a large, unselected cohort of individuals uncovers carriers who were missed by routine medical care, demonstrating the utility of broad genetic screening.
Simvastatin with or without Ezetimibe in Familial Hypercholesterolemia
In a 2-year clinical trial, the addition of ezetimibe to simvastatin had no effect on the progression of atherosclerosis, as measured by carotid-artery intima–media thickness, despite the additional lowering of levels of low-density lipoprotein cholesterol and C-reactive protein by ezetimibe when added to simvastatin. However, the study was not powered to assess clinical end points. The addition of ezetimibe to simvastatin had no effect on the progression of atherosclerosis, as measured by carotid-artery intima–media thickness, despite the additional lowering of levels of low-density lipoprotein cholesterol and C-reactive protein. A reduction in levels of low-density lipoprotein (LDL) cholesterol constitutes one of the cornerstones in the prevention of cardiovascular disease. In recent trials comparing various statins or the same statin at various doses, aggressive therapy to lower LDL cholesterol levels was associated with a reduction in rates of cardiovascular events. 1 – 4 However, administration of the highest approved statin dose offers only limited additional lowering of LDL cholesterol at the expense of an increased incidence of side effects. 5 Therefore, novel compounds that further reduce LDL cholesterol levels when added to statin therapy are of interest. A recently introduced compound, ezetimibe, selectively . . .
Polygenic risk scores for low-density lipoprotein cholesterol and familial hypercholesterolemia
Familial hypercholesterolemia (FH) is an autosomal dominant monogenic disorder characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C) and an increased risk of premature coronary artery disease (CAD). Recently, it has been shown that a high polygenic risk score (PRS) could be an independent risk factor for CAD in FH patients of European ancestry. However, it is uncertain whether PRS is also useful for risk stratification of FH patients in East Asia. We recruited and genotyped clinically diagnosed FH (CDFH) patients from the Kanazawa University Mendelian Disease FH registry and controls from the Shikamachi Health Improvement Practice genome cohort in Japan. We calculated PRS from 3.6 million variants of each participant (imputed from the 1000 Genome phase 3 Asian dataset) for LDL-C (PRS ) using a genome-wide association study summary statistic from the BioBank Japan Project. We assessed the association of PRS with LDL-C and CAD among and within monogenic FH, mutation negative CDFH, and controls. We tested a total of 1223 participants (376 FH patients, including 173 with monogenic FH and 203 with mutation negative CDFH, and 847 controls) for the analyses. PRS was significantly higher in mutation negative CDFH patients than in controls (p = 3.1 × 10 ). PRS was also significantly linked to LDL-C in controls (p trend = 3.6 × 10 ) but not in FH patients. Moreover, we could not detect any association between PRS and CAD in any of the groups. In conclusion, mutation negative CDFH patients demonstrated significantly higher PRS than controls. However, PRS may have little additional effect on LDL-C and CAD among FH patients.
The UCL low-density lipoprotein receptor gene variant database: pathogenicity update
BackgroundFamilial hypercholesterolaemia (OMIM 143890) is most frequently caused by variations in the low-density lipoprotein receptor (LDLR) gene. Predicting whether novel variants are pathogenic may not be straightforward, especially for missense and synonymous variants. In 2013, the Association of Clinical Genetic Scientists published guidelines for the classification of variants, with categories 1 and 2 representing clearly not or unlikely pathogenic, respectively, 3 representing variants of unknown significance (VUS), and 4 and 5 representing likely to be or clearly pathogenic, respectively. Here, we update the University College London (UCL) LDLR variant database according to these guidelines.MethodsPubMed searches and alerts were used to identify novel LDLR variants for inclusion in the database. Standard in silico tools were used to predict potential pathogenicity. Variants were designated as class 4/5 only when the predictions from the different programs were concordant and as class 3 when predictions were discordant.ResultsThe updated database (http://www.lovd.nl/LDLR) now includes 2925 curated variants, representing 1707 independent events. All 129 nonsense variants, 337 small frame-shifting and 117/118 large rearrangements were classified as 4 or 5. Of the 795 missense variants, 115 were in classes 1 and 2, 605 in class 4 and 75 in class 3. 111/181 intronic variants, 4/34 synonymous variants and 14/37 promoter variants were assigned to classes 4 or 5. Overall, 112 (7%) of reported variants were class 3.ConclusionsThis study updates the LDLR variant database and identifies a number of reported VUS where additional family and in vitro studies will be required to confirm or refute their pathogenicity.
The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study
Patients with homozygous familial hypercholesterolemia (HoFH) are at extremely elevated risk for early cardiovascular disease because of exposure to elevated low-density lipoprotein cholesterol (LDL-C) plasma levels from birth. Lowering LDL-C by statin therapy is the cornerstone for cardiovascular disease prevention, but the residual risk in HoFH remains high, emphasizing the need for additional therapies. In the present study, we evaluated the effect of serial infusions with CER-001, a recombinant human apolipoprotein A-I (apoA-I)-containing high-density lipoprotein-mimetic particle, on carotid artery wall dimensions in patients with HoFH. Twenty-three patients (mean age 39.4 ± 13.5 years, mean LDL-C 214.2 ± 81.5 mg/dL) with genetically confirmed homozygosity or compound heterozygosity for LDLR, APOB, PCSK9, or LDLRAP1 mutations received 12 biweekly infusions with CER-001 (8 mg/kg). Before and 1 hour after the first infusion, lipid values were measured. Magnetic resonance imaging (3-T magnetic resonance imaging) scans of the carotid arteries were acquired at baseline and after 24 weeks to assess changes in artery wall dimensions. After CER-001 infusion, apoA-I increased from 114.8 ± 20.7 mg/dL to 129.3 ± 23.0 mg/dL. After 24 weeks, mean vessel wall area (primary end point) decreased from 17.23 to 16.75 mm(2) (P = .008). A trend toward reduction of mean vessel wall thickness was observed (0.75 mm at baseline and 0.74 mm at follow-up, P = .0835). In HoFH, 12 biweekly infusions with an apoA-I-containing high-density lipoprotein-mimetic particle resulted in a significant reduction in carotid mean vessel wall area, implying that CER-001 may reverse atherogenic changes in the arterial wall on top of maximal low-density lipoprotein-lowering therapy. This finding supports further clinical evaluation of apoA-I-containing particles in patients with HoFH.
Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction
Familial hypercholesterolemia (FH) is an oligogenic disorder characterized by markedly elevated low-density lipoprotein cholesterol (LDLC) levels. Variants in four genes have been reported to cause the classical autosomal-dominant form of the disease. FH is largely under-diagnosed in European countries. As FH increases the risk for coronary artery disease (CAD) and myocardial infarction (MI), it might be specifically overlooked in the large number of such patients. Here, we systematically examined the frequency of potential FH-causing variants by exome sequencing in 255 German patients with premature MI and a positive family history for CAD. We further performed co-segregation analyses in an average of 5.5 family members per MI patient. In total, we identified 11 potential disease-causing variants that co-segregate within the families, that is, 5% of patients with premature MI and positive CAD family history had FH. Eight variants were previously reported as disease-causing and three are novel (LDLR.c.811G>A p.(V271I)), PCSK9.c.610G>A (p.(D204N)) and STAP1.c.139A>G (p.(T47A))). Co-segregation analyses identified multiple additional family members carrying one of these FH variants and the clinical phenotype of either FH (n=2) or FH and premature CAD (n=15). However, exome sequencing also revealed that some variants in FH genes, which have been reported to cause FH, do not co-segregate with FH. The data reveal that a large proportion of FH patients escape the diagnosis, even when they have premature MI. Hence, systematic molecular-genetic screening for FH in such patients may reveal a substantial number of cases and thereby allow a timely LDLC-lowering in both FH/MI patients as well as their variant-carrying family members.
Analysis of a deeply-phenotyped familial hypercholesterolemia cohort from Mexico shows a role for both rare and common alleles across known dyslipidemia genes and reveals structural variation in a novel locus
Familial hypercholesterolemia (FH) is a genetic disorder driven in part by mutations in three genes that encode components of the cholesterol pathway: LDLR, APOB, and PCSK9 . However, the majority of FH genetics has been performed in individuals of European descent. Here, we leveraged a cohort of 300 patients from the Mexican FH registry to understand how rare, high liability alleles and common variants might contribute to shaping individual risk. Using a combination of whole exome and of short- and long-read whole genome sequencing, we report three key findings. First, we observed that rare pathogenic point mutations and structural variants in all known FH genes, together with variants in APOE, CREB3L3, and PLIN1 , contribute to a molecular FH diagnosis in 67% of families, including novel gene-disruptive copy number variants (CNVs) which arose in a native American background. Second, ancestry-adjusted polygenic risk score analysis identified a significant liability for coronary artery disease, hypertension, LDL, HDL, and Type 2 Diabetes. The polygenic signal for LDL was present in patients with rare, pathogenic FH mutations and was more prominent in individuals bereft of a molecular FH diagnosis. Finally, we report both a whole-gene duplication and common, non-coding variants in a novel locus, PDZK1 , which contribute to the genetic burden of FH, a finding we replicated in the UK Biobank (UKB). Together, our analyses illustrate the value of genetic studies in non-European populations and reinforce the notion that individual risk to disease can arise from both rare, large effect alleles (alone or in combination across genes) and common variants that increase the mutational burden of a biological system.
Dietary Cholesterol Is Highly Associated with Severity of Hyperlipidemia and Atherosclerotic Lesions in Heterozygous LDLR-Deficient Hamsters
Objective: Familial hypercholesterolemia (FH) is a dominant inherited disease caused mainly by low-density lipoprotein receptor (LDLR) gene mutations. To different extents, both heterozygous and homozygous FH patients develop premature coronary heart disease (CHD). However, most of the experimental animal models with LDLR deficiency could not fully recapitulate FH because they develop hyperlipidemia and atherosclerosis only in homozygous, but not in heterozygous, form. In the current study, we investigated the responsiveness of the LDLR+/− hamster to dietary cholesterol and whether plasma cholesterol levels were positively associated with the severity of atherosclerosis. Approach and Methods: wild type WT and LDLR+/− hamsters were fed a high fat diet with different cholesterol contents (HCHF) for 12 or 16 weeks. Plasma lipids, (apo)lipoproteins, and atherosclerosis in both the aorta and coronary arteries were analyzed. After a HCHF diet challenge, the levels of total cholesterol (TC) in WT and LDLR+/− hamsters were significantly elevated, but the latter showed a more pronounced lipoprotein profile, with higher cholesterol levels that were positively correlated with dietary cholesterol contents. The LDLR+/− hamsters also showed accelerated atherosclerotic lesions in the aorta and coronary arteries, whereas only mild aortic lesions were observed in WT hamsters. Conclusions: Our findings demonstrate that, unlike other rodent animals, the levels of plasma cholesterol in hamsters can be significantly modulated by the intervention of dietary cholesterol, which were closely associated with severity of atherosclerosis in LDLR+/− hamsters, suggesting that the LDLR+/− hamster is an ideal animal model for FH and has great potential in the study of FH and atherosclerosis-related CHD.
Machine learning modelling of blood lipid biomarkers in familial hypercholesterolaemia versus polygenic/environmental dyslipidaemia
Familial hypercholesterolaemia increases circulating LDL-C levels and leads to premature cardiovascular disease when undiagnosed or untreated. Current guidelines support genetic testing in patients complying with clinical diagnostic criteria and cascade screening of their family members. However, most of hyperlipidaemic subjects do not present pathogenic variants in the known disease genes, and most likely suffer from polygenic hypercholesterolaemia, which translates into a relatively low yield of genetic screening programs. This study aims to identify new biomarkers and develop new approaches to improve the identification of individuals carrying monogenic causative variants. Using a machine-learning approach in a paediatric dataset of individuals, tested for disease causative genes and with an extended lipid profile, we developed new models able to classify familial hypercholesterolaemia patients with a much higher specificity than currently used methods. The best performing models incorporated parameters absent from the most common FH clinical criteria, namely apoB/apoA-I, TG/apoB and LDL1. These parameters were found to contribute to an improved identification of monogenic individuals. Furthermore, models using only TC and LDL-C levels presented a higher specificity of classification when compared to simple cut-offs. Our results can be applied towards the improvement of the yield of genetic screening programs and corresponding costs.
Lower risk of smoking-related cancer in individuals with familial hypercholesterolemia compared with controls: a prospective matched cohort study
According to guidelines, individuals with familial hypercholesterolemia (FH) shall receive lifestyle intervention and intensive lipid-lowering treatment from early in life to reduce the risk of coronary heart disease. Our aim was to study if treatment of FH also could affect risk of lifestyle-related cancer. We presented cumulative incidence of total cancer and lifestyle-related cancer sites in individuals with genetically verified FH (n = 5531) compared with age and sex matched controls (n = 108354). Individuals with FH had 20% lower risk of smoking-related cancer compared with the control population [HR 0.80 (95% CI, 0.65–0.98)], in particular men with FH at 40–69 years at age of diagnosis with HR 0.69 (95% CI, 0.49–0.97). The FH population and controls had similar rates of total cancer [HR 0.97 (95% CI, 0.86–1.09)], cancer related to poor diet [HR 0.82 (95% CI, 0.59–1.15)], cancer related to physical inactivity [HR 0.93 (95% CI, 0.73–1.18)], alcohol-related cancer [HR 0.98 (95% CI, 0.80–1.22)] and cancer related to obesity [HR 1.03 (95% CI, 0.89–1.21)]. In summary, we found reduced risk of smoking-related cancer in individuals with FH, most likely due to a lower prevalence of smoking. Implications of these findings can be increased motivation and thus compliance to treatment of hypercholesterolemia.