Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,271 result(s) for "Hyperspectral image classification"
Sort by:
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, Red-Green-Blue (RGB) channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.
Spectral-Spatial Response for Hyperspectral Image Classification
This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboringregions. SSRformsadeeparchitectureandisabletolearndiscriminativespectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based methods as special scenarios within a single unified framework. Based on SSR, we further propose the Subspace Learning-based Networks (SLN) as an example of SSR for HSI classification. In SLN, the joint spectral and spatial features are learned using templates simply learned by Marginal Fisher Analysis (MFA) and Principal Component Analysis (PCA). An important contribution to the success of SLN is the exploitation of label information of training samples and the local spatial structure of HSI. Extensive experimental results on four challenging HSI datasets taken from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) airborne sensors show the implementational simplicity of SLN and verify the superiority of SSR for HSI classification.
Double-Branch Multi-Attention Mechanism Network for Hyperspectral Image Classification
Recently, Hyperspectral Image (HSI) classification has gradually been getting attention from more and more researchers. HSI has abundant spectral and spatial information; thus, how to fuse these two types of information is still a problem worth studying. In this paper, to extract spectral and spatial feature, we propose a Double-Branch Multi-Attention mechanism network (DBMA) for HSI classification. This network has two branches to extract spectral and spatial feature respectively which can reduce the interference between the two types of feature. Furthermore, with respect to the different characteristics of these two branches, two types of attention mechanism are applied in the two branches respectively, which ensures to extract more discriminative spectral and spatial feature. The extracted features are then fused for classification. A lot of experiment results on three hyperspectral datasets shows that the proposed method performs better than the state-of-the-art method.
Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network
In recent years, researchers have paid increasing attention on hyperspectral image (HSI) classification using deep learning methods. To improve the accuracy and reduce the training samples, we propose a double-branch dual-attention mechanism network (DBDA) for HSI classification in this paper. Two branches are designed in DBDA to capture plenty of spectral and spatial features contained in HSI. Furthermore, a channel attention block and a spatial attention block are applied to these two branches respectively, which enables DBDA to refine and optimize the extracted feature maps. A series of experiments on four hyperspectral datasets show that the proposed framework has superior performance to the state-of-the-art algorithm, especially when the training samples are signally lacking.
CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery
Hyperspectral image (HSI) classification has become one of the most significant tasks in the field of hyperspectral analysis. However, classifying each pixel in HSI accurately is challenging due to the curse of dimensionality and limited training samples. In this paper, we present an HSI classification architecture called camera spectral response network (CSR-Net), which can learn the optimal camera spectral response (CSR) function for HSI classification problems and effectively reduce the spectral dimensions of HSI. Specifically, we design a convolutional layer to simulate the capturing process of cameras, which learns the optimal CSR function for HSI classification. Then, spectral and spatial features are further extracted by spectral and spatial attention modules. On one hand, the learned CSR can be implemented physically and directly used to capture scenes, which makes the image acquisition process more convenient. On the other hand, compared with ordinary HSIs, we only need images with far fewer bands, without sacrificing the classification precision and avoiding the curse of dimensionality. The experimental results of four popular public hyperspectral datasets show that our method, with only a few image bands, outperforms state-of-the-art HSI classification methods which utilize the full spectral bands of images.
Spectral-Spatial Mamba for Hyperspectral Image Classification
Recently, transformer has gradually attracted interest for its excellence in modeling the long-range dependencies of spatial-spectral features in HSI. However, transformer has the problem of the quadratic computational complexity due to the self-attention mechanism, which is heavier than other models and thus has limited adoption in HSI processing. Fortunately, the recently emerging state space model-based Mamba shows great computational efficiency while achieving the modeling power of transformers. Therefore, in this paper, we first proposed spectral-spatial Mamba (SS-Mamba) for HSI classification. Specifically, SS-Mamba mainly includes a spectral-spatial token generation module and several stacked spectral-spatial Mamba blocks. Firstly, the token generation module converts any given HSI cube to spatial and spectral tokens as sequences. And then these tokens are sent to stacked spectral-spatial mamba blocks (SS-MB). Each SS-MB includes two basic mamba blocks and a spectral-spatial feature enhancement module. The spatial and spectral tokens are processed separately by the two basic mamba blocks, correspondingly. Moreover, the feature enhancement module modulates spatial and spectral tokens using HSI sample’s center region information. Therefore, the spectral and spatial tokens cooperate with each other and achieve information fusion within each block. The experimental results conducted on widely used HSI datasets reveal that the proposed SS-Mamba requires less processing time compared with transformer. The Mamba-based method thus opens a new window for HSI classification.
An extensive review of hyperspectral image classification and prediction: techniques and challenges
Hyperspectral Image Processing (HSIP) is an essential technique in remote sensing. Currently, extensive research is carried out in hyperspectral image processing, involving many applications, including land cover classification, anomaly detection, plant classification, etc., Hyperspectral image processing is a powerful tool that enables us to capture and analyze an object's spectral information with greater accuracy and precision. Hyperspectral images are made up of hundreds of spectral bands, capturing an immense amount of information about the earth's surface. Accurately classifying and predicting land cover in these images is critical to understanding our planet's ecosystem and the impact of human activities on it. With the advent of deep learning techniques, the process of analyzing hyperspectral images has become more efficient and accurate than ever before. These techniques enable us to categorize land cover and predict Land Use/Land Cover (LULC) with exceptional precision, providing valuable insights into the state of our planet's environment. Image classification is difficult in hyperspectral image processing because of the large number of data samples but with a limited label. By selecting the appropriate bands from the image, we can get the finest classification results and predicted values. To our knowledge, the previous review papers concentrated only on the classification method. Here, we have presented an extensive review of various components of hyperspectral image processing, hyperspectral image analysis, pre-processing of an image, feature extraction and feature selection methods to select the number of features (bands), classification methods, and prediction methods. In addition, we also elaborated on the datasets used for classification, evaluation metrics used, various issues, and challenges. Thus, this review article will benefit new researchers in the hyperspectral image classification domain.
Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network
Recent research has shown that using spectral–spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods—namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods—on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.
A Fast Dense Spectral–Spatial Convolution Network Framework for Hyperspectral Images Classification
Recent research shows that deep-learning-derived methods based on a deep convolutional neural network have high accuracy when applied to hyperspectral image (HSI) classification, but long training times. To reduce the training time and improve accuracy, in this paper we propose an end-to-end fast dense spectral–spatial convolution (FDSSC) framework for HSI classification. The FDSSC framework uses different convolutional kernel sizes to extract spectral and spatial features separately, and the “valid” convolution method to reduce the high dimensions. Densely-connected structures—the input of each convolution consisting of the output of all previous convolution layers—was used for deep learning of features, leading to extremely accurate classification. To increase speed and prevent overfitting, the FDSSC framework uses a dynamic learning rate, parametric rectified linear units, batch normalization, and dropout layers. These attributes enable the FDSSC framework to achieve accuracy within as few as 80 epochs. The experimental results show that with the Indian Pines, Kennedy Space Center, and University of Pavia datasets, the proposed FDSSC framework achieved state-of-the-art performance compared with existing deep-learning-based methods while significantly reducing the training time.
Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification
This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial features from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN), a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. In addition, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a Softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with six state-of-the-art methods, including the popular 3D-CNN model, on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy Space Center). The obtained results show that Bi-CLSTM can improve the classification performance by almost 1.5 % as compared to 3D-CNN.