Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
20,168 result(s) for "Hypertrophy"
Sort by:
Semaglutide ameliorates pressure overload-induced cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome
Pathological cardiac hypertrophy is an important cause of heart failure(HF). Recent studies reveal that glucagon-like peptide-1 receptor (GLP1R) agonists can improve mortality and left ventricular ejection fraction in the patients with type 2 diabetes and HF. The present study aims to investigate whether semaglutide, a long-acting GLP1R agonist, can ameliorate cardiac hypertrophy induced by pressure overload, and explore the potential mechanism. The rats were performed transverse aortic constriction (TAC) to mimic pressure overload model. The rats were divided into four groups including Sham, TAC, TAC + semaglutide, and TAC + semaglutide + HCQ (hydroxychloroquine, an inhibitor of mitophagy). The rats in each experimental group received their respective interventions for 4 weeks. The parameters of left ventricular hypertrophy(LVH) were measured by echocardiography, Hematoxylin–eosin (HE) staining, western-blot and immunohistochemistry (IHC), respectively. The changes of mitophagy were reflected by detecting cytochrome c oxidase subunit II (COXII), LC3II/LC3I, mitochondria, and autophagosomes. Meanwhile, NLRP3, Caspase-1, and interleukin-18 were detected to evaluate the activation of NLRP3 inflammasome in each group. The results suggest that LVH, impaired mitophagy, and activation of NLRP3 inflammasome were present in TAC rats. Semaglutide significantly reduced LVH, improve mitophagy, and down-regulated NLRP3 inflammatory signal pathway in TAC rats. However, the reversed effect of semaglutide on cardiac hypertrophy was abolished by HCQ, which restored the activation of NLRP3 inflammasome suppressed by improved mitophagy. In conclusion, semaglutide ameliorates the cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome. Semaglutide may be a novel potential option for intervention of cardiac hypertrophy induced by pressure overload.
MiR-30-Regulated Autophagy Mediates Angiotensin II-Induced Myocardial Hypertrophy
Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group). Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene), and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy.
CCR2 dependent recruited pro-inflammatory monocytes contribute to the development of left ventricular hypertrophy in mice upon transverse aortic constriction
C-C chemokine receptor type 2 positive monocytes are recruited from the circulation to infiltrate inflamed tissue. Left ventricular (LV) hypertrophy caused by pressure overload presents with a chronic myocardial inflammation in our mouse model of transverse aortic constriction (TAC). Recent analyses demonstrated that deficiency of fractalkine receptor CX3CR1 leads to a pro-inflammatory phenotype characterized by increased numbers of Ly6C high macrophages in the myocardium due to chemokine receptor CCR2 dependent monocyte recruitment from the circulation. Here, we analyzed the role of CCR2 in the development of left ventricular hypertrophy using Ccr2 -/- mice. We were able to show that a lack of CCR2 dependent recruited Ly6C high monocytes in the myocardium reveled cardioprotective effects resulting in less hypertrophy and reduced brain natriuretic peptide (BNP) expression, as biomarker of heart failure, in the myocardium. CCR2-deficiency caused an increase in neutrophil and a reduced macrophage accumulation in the myocardium in response to pressure overload. The cytokine pattern measured in the LV tissue indicates a significantly reduced release of IL1-β whereas TNF-α concentrations are increased following TAC. IL-6 secretion is not altered by the lack of CCR2 and the pro-remodeling cytokine IL-10 is not increased either. This study highlights the importance of CCR2 in the pathogenesis of LV hypertrophy and the relevance of CCR2 dependent recruited monocytes for the orchestration of the cardiac immune response.
Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.
Central systolic blood pressure and central pulse pressure predict left ventricular hypertrophy in hypertensive children
BackgroundCentral systolic and pulse pressures are stronger predictors of cardiovascular risk and hypertensive organ damage than brachial blood pressure. It is suggested that isolated systolic hypertension typically seen in adolescents is associated with normal central blood pressure and does not lead to organ damage and this phenomenon is called spurious hypertension.MethodsWe assessed the prevalence of spurious hypertension and analyzed utility of pulse wave analysis as determinant of hypertensive organ damage in 294 children (62 girls; 15.0 ± 2.4 years) diagnosed as primary hypertension. White coat hypertension, ambulatory prehypertension, ambulatory hypertension, and severe ambulatory hypertension were diagnosed in 127, 29, 41, and 97 patients, respectively.ResultsNormal central blood pressure was found in 100% in patients with white coat hypertension, 93% in pre-hypertensives, 51.2% in those with ambulatory hypertension, and 27.8% with severe ambulatory hypertension (p = 0.0001). Children with severe ambulatory hypertension had higher central systolic and pulse pressure, pulse wave velocity, and greater prevalence of left ventricular hypertrophy than white coat and prehypertensive children (p < 0.05). Left ventricular mass index and carotid intima-media thickness correlated with central systolic and pulse pressure (p < 0.05 for all). Receiver operating curve area was similar for augmentation pressure (0.5836), 24-h ambulatory systolic blood pressure (0.5841), central systolic blood pressure (0.6090), and central pulse pressure (0.5611) as predictors of left ventricular hypertrophy.ConclusionsThese findings suggest that pulse wave analysis is complementary to ambulatory blood pressure monitoring in assessment of risk of organ damage in hypertensive adolescents.
Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium
Background The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. Methods Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and β-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of β-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. Results RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic β-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/β-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of β-MHC and hence the hypertrophic response. Conclusion Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Cortisol Excess in Patients With Primary Aldosteronism Impacts Left Ventricular Hypertrophy
Primary aldosteronism (PA) represents the most frequent form of endocrine hypertension. Hyperaldosteronism and hypercortisolism both induce excessive left ventricular hypertrophy (LVH) compared with matched essential hypertensives. In recent studies frequent cosecretion of cortisol and aldosterone has been reported in patients with PA. Our aim was to investigate the impact of cortisol cosecretion on LVH in patients with PA. We determined 24-hour excretion of mineralocorticoids and glucocorticoids by gas chromatography-mass spectrometry and assessed cardiac remodeling using echocardiography initially and 1 year after initiation of treatment of PA. We included 73 patients from the Munich center of the German Conn's registry: 45 with unilateral aldosterone-producing adenoma and 28 with bilateral adrenal hyperplasia. At the time of diagnosis, 85% of patients with PA showed LVH according to left ventricular mass index [(LVMI); median 62.4 g/m2.7]. LVMI correlated positively with total glucocorticoid excretion (r2 = 0.076, P = 0.018) as well as with tetrahydroaldosterone excretion (r2 = 0.070, P = 0.024). Adrenalectomy led to significantly reduced LVMI in aldosterone-producing adenoma (P < 0.001) whereas mineralocorticoid receptor antagonist therapy in bilateral adrenal patients with hyperplasia reduced LVMI to a lesser degree (P = 0.024). In multivariate analysis, the decrease in LVMI was positively correlated with total glucocorticoid excretion and systolic 24-hour blood pressure, but not with tetrahydroaldosterone excretion. Cortisol excess appears to have an additional impact on cardiac remodeling in patients with PA. Treatment of PA by either adrenalectomy or mineralocorticoid receptor antagonist improves LVMI. This effect was most pronounced in patients with high total glucocorticoid excretion.
The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players
The study aimed to compare the chronic eccentric-overload training effects of unilateral (lateral lunge) vs bilateral (half-squat) using an inertial device, on hypertrophy and physical performance. Twenty-seven young team sports male players performed a 4 sets of 7 repetitions of inertial eccentric overload training, biweekly for 6 weeks, distributed in unilateral lunge group (UG: age: 22.8 ± 2.9 years; body mass: 75.3 ± 8.8 kg; height: 177.3 ± 3.7 cm) and bilateral squat group (BG: age: 22.6 ± 2.7 years; body mass: 79.5 ± 12.8 kg; height: 164.2 ± 7 cm). Lower limb muscle volume, counter movement jump (CMJ), power with both (POWER), dominant (POWERd) and no-dominant leg (POWERnd), change of direction turn of 90° with dominant (COD90d) and no-dominant leg (COD90nd) and 180° (COD180d and COD180nd), and 10m sprint time (T-10m) were measured pre and post-intervention. The UG obtained an increase of adductor major (+11.1%) and vastus medialis (+12.6%) higher than BG. The BG obtained an increase of vastus lateralis (+9.9%) and lateral gastrocnemius (+9.1%) higher than UG. Both groups improved CMJ, POWER, POWERd, POWERnd, COD90 and DEC-COD90, without changes in T-10m. The UG decrease DEC-COD90nd (-21.1%) and BG increase POWER (+38.6%) substantially more than the other group. Six-weeks of unilateral / bilateral EO training induce substantial improvements in lower limbs muscle volume and functional performance, although unilateral training seems to be more effective in improving COD90 performance.