Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
859
result(s) for
"Hypertrophy, Left Ventricular - metabolism"
Sort by:
Dapagliflozin: a sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling
2021
Background
Cardiac remodeling is one of the major risk factors for heart failure. In patients with type 2 diabetes, sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of the first hospitalization for heart failure, possibly through glucose-independent mechanisms in part, but the underlying mechanisms remain largely unknown. This study aimed to shed light on the efficacy of dapagliflozin in reducing cardiac remodeling and potential mechanisms.
Methods
Sprague–Dawley (SD) rats, induced by chronic infusion of Angiotensin II (Ang II) at a dose of 520 ng/kg per minute for 4 weeks with ALZET® mini-osmotic pumps, were treated with either SGLT2 inhibitor dapagliflozin (DAPA) or vehicle alone. Echocardiography was performed to determine cardiac structure and function. Cardiac fibroblasts (CFs) were treated with Ang II (1 μM) with or without the indicated concentration (0.5, 1, 10 μM) of DAPA. The protein levels of collagen and TGF-β1/Smad signaling were measured along with body weight, and blood biochemical indexes.
Results
DAPA pretreatment resulted in the amelioration of left ventricular dysfunction in Ang II-infused SD rats without affecting blood glucose and blood pressure. Myocardial hypertrophy, fibrosis and increased collagen synthesis caused by Ang II infusion were significantly inhibited by DAPA pretreatment. In vitro, DAPA inhibit the Ang II-induced collagen production of CFs. Immunoblot with heart tissue homogenates from chronic Ang II-infused rats revealed that DAPA inhibited the activation of TGF-β1/Smads signaling.
Conclusion
DAPA ameliorates Ang II-induced cardiac remodeling by regulating the TGF-β1/Smad signaling in a non-glucose-lowering dependent manner.
Journal Article
High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ
2018
Abstract
Background/Aims: Systemic hyperlipidemia and intracellular lipid accumulation induced by chronic high fat diet (HFD) leads to enhanced fatty acid oxidation (FAO) and ketogenesis. The present study was aimed to determine whether activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) by surplus free fatty acids (FA) in hyperlipidemic condition, has a positive feedback regulation over FAO and ketogenic enzymes controlling lipotoxicity and cardiac apoptosis. Methods: 8 weeks old C57BL/6 wild type (WT) or PPAR-γ-/- mice were challenged with 16 weeks 60% HFD to induce obesity mediated type 2 diabetes mellitus (T2DM) and diabetic cardiomyopathy. Treatment course was followed by echocardiographic measurements, glycemic and lipid profiling, immunoblot, qPCR and immunohistochemistry (IHC) analysis of PPAR-γ and following mitochondrial metabolic enzymes 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2), mitochondrial β- hydroxy butyrate dehydrogenase (BDH1) and pyruvate dehydrogenase kinase isoform 4 (PDK4). In vivo model was translated in vitro, with neonatal rat cardiomyocytes (NRCM) treated with PPAR-γ agonist/antagonist and PPAR-γ overexpression adenovirus in presence of palmitic acid (PA). Apoptosis was determined in vivo from left ventricular heart by TUNEL assay and immunoblot analysis. Results: We found exaggerated circulating ketone bodies production and expressions of the related mitochondrial enzymes HMGCS2, BDH1 and PDK4 in HFD-induced diabetic hearts and in PA-treated NRCM. As a mechanistic approach we found HFD mediated activation of PPAR-γ is associated with the above-mentioned mitochondrial enzymes. HFD-fed PPAR-γ-/-mice display decreased hyperglycemia, hyperlipidemia associated with increased insulin responsiveness as compared to HFD-fed WT mice PPAR-γ-/–HFD mice demonstrated a more robust functional recovery after diabetes induction, as well as significantly reduced myocyte apoptosis and improved cardiac function. Conclusions: PPAR-γ has been described previously to regulate lipid metabolism and adipogenesis. The present study suggests for the first time that increased PPAR-γ expression by HFD is responsible for cardiac dysfunction via upregulation of mitochondrial enzymes HMGCS2, BDH1 and PDK4. Targeting PPAR-γ and its downstream mitochondrial enzymes will provide novel strategies in preventing metabolic and myocardial dysfunction in diabetes mellitus.
Journal Article
High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy
2021
Mitochondrial dysfunction and impaired Ca
2+
handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca
2+
release-activated calcium channel protein 1) calcium channel is important for the increase in Ca
2+
entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca
2+
influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca
2+
entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1–Drp1 axis is a novel target for treating DCM.
Journal Article
Cardiac Aging: From Basic Research to Therapeutics
With research progress on longevity, we have gradually recognized that cardiac aging causes changes in heart structure and function, including progressive myocardial remodeling, left ventricular hypertrophy, and decreases in systolic and diastolic function. Elucidating the regulatory mechanisms of cardiac aging is a great challenge for biologists and physicians worldwide. In this review, we discuss several key molecular mechanisms of cardiac aging and possible prevention and treatment methods developed in recent years. Insights into the process and mechanism of cardiac aging are necessary to protect against age-related diseases, extend lifespan, and reduce the increasing burden of cardiovascular disease in elderly individuals. We believe that research on cardiac aging is entering a new era of unique significance for the progress of clinical medicine and social welfare.
Journal Article
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis
by
Deppe, Jennifer
,
Richter, Beatrice
,
Fischer, Dagmar-Christiane
in
Animals
,
Cardiomyocytes
,
Enzymes
2019
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Journal Article
Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse
by
Podesser, Bruno K.
,
Eriksson, Maria
,
Szabo, Petra L.
in
Actin
,
Aging
,
Animal genetic engineering
2019
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.
Journal Article
CCR2 dependent recruited pro-inflammatory monocytes contribute to the development of left ventricular hypertrophy in mice upon transverse aortic constriction
2025
C-C chemokine receptor type 2 positive monocytes are recruited from the circulation to infiltrate inflamed tissue. Left ventricular (LV) hypertrophy caused by pressure overload presents with a chronic myocardial inflammation in our mouse model of transverse aortic constriction (TAC). Recent analyses demonstrated that deficiency of fractalkine receptor CX3CR1 leads to a pro-inflammatory phenotype characterized by increased numbers of Ly6C high macrophages in the myocardium due to chemokine receptor CCR2 dependent monocyte recruitment from the circulation. Here, we analyzed the role of CCR2 in the development of left ventricular hypertrophy using Ccr2 -/- mice. We were able to show that a lack of CCR2 dependent recruited Ly6C high monocytes in the myocardium reveled cardioprotective effects resulting in less hypertrophy and reduced brain natriuretic peptide (BNP) expression, as biomarker of heart failure, in the myocardium. CCR2-deficiency caused an increase in neutrophil and a reduced macrophage accumulation in the myocardium in response to pressure overload. The cytokine pattern measured in the LV tissue indicates a significantly reduced release of IL1-β whereas TNF-α concentrations are increased following TAC. IL-6 secretion is not altered by the lack of CCR2 and the pro-remodeling cytokine IL-10 is not increased either. This study highlights the importance of CCR2 in the pathogenesis of LV hypertrophy and the relevance of CCR2 dependent recruited monocytes for the orchestration of the cardiac immune response.
Journal Article
Semaglutide ameliorates pressure overload-induced cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome
2024
Pathological cardiac hypertrophy is an important cause of heart failure(HF). Recent studies reveal that glucagon-like peptide-1 receptor (GLP1R) agonists can improve mortality and left ventricular ejection fraction in the patients with type 2 diabetes and HF. The present study aims to investigate whether semaglutide, a long-acting GLP1R agonist, can ameliorate cardiac hypertrophy induced by pressure overload, and explore the potential mechanism. The rats were performed transverse aortic constriction (TAC) to mimic pressure overload model. The rats were divided into four groups including Sham, TAC, TAC + semaglutide, and TAC + semaglutide + HCQ (hydroxychloroquine, an inhibitor of mitophagy). The rats in each experimental group received their respective interventions for 4 weeks. The parameters of left ventricular hypertrophy(LVH) were measured by echocardiography, Hematoxylin–eosin (HE) staining, western-blot and immunohistochemistry (IHC), respectively. The changes of mitophagy were reflected by detecting cytochrome c oxidase subunit II (COXII), LC3II/LC3I, mitochondria, and autophagosomes. Meanwhile, NLRP3, Caspase-1, and interleukin-18 were detected to evaluate the activation of NLRP3 inflammasome in each group. The results suggest that LVH, impaired mitophagy, and activation of NLRP3 inflammasome were present in TAC rats. Semaglutide significantly reduced LVH, improve mitophagy, and down-regulated NLRP3 inflammatory signal pathway in TAC rats. However, the reversed effect of semaglutide on cardiac hypertrophy was abolished by HCQ, which restored the activation of NLRP3 inflammasome suppressed by improved mitophagy. In conclusion, semaglutide ameliorates the cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome. Semaglutide may be a novel potential option for intervention of cardiac hypertrophy induced by pressure overload.
Journal Article
Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits
2018
Background
There are increasing evidence that left ventricle diastolic dysfunction is the initial functional alteration in the diabetic myocardium. In this study, we hypothesized that alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function and structure in diabetic rabbits.
Methods
A total of 30 rabbits were randomized into control group (CON, n = 10), alloxan-induced diabetic group (DM, n = 10) and alogliptin-treated (12.5 mg/kd/day for 12 weeks) diabetic group (DM-A, n = 10). Echocardiographic and hemodynamic studies were performed in vivo. Mitochondrial morphology, respiratory function, membrane potential and reactive oxygen species (ROS) generation rate of left ventricular tissue were assessed. The serum concentrations of glucagon-like peptide-1, insulin, inflammatory and oxidative stress markers were measured. Protein expression of TGF-β1, NF-κB p65 and mitochondrial biogenesis related proteins were determined by Western blotting.
Results
DM rabbits exhibited left ventricular hypertrophy, left atrial dilation, increased E/e′ ratio and normal left ventricular ejection fraction. Elevated left ventricular end diastolic pressure combined with decreased maximal decreasing rate of left intraventricular pressure (− dp/dtmax) were observed. Alogliptin alleviated ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction in diabetic rabbits. These changes were associated with decreased mitochondrial ROS production rate, prevented mitochondrial membrane depolarization and improved mitochondrial swelling. It also improved mitochondrial biogenesis by PGC-1α/NRF1/Tfam signaling pathway.
Conclusions
The DPP-4 inhibitor alogliptin prevents cardiac diastolic dysfunction by inhibiting ventricular remodeling, explicable by improved mitochondrial function and increased mitochondrial biogenesis.
Journal Article
Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium
by
Nagesh, Prashanth Thevakar
,
Bunton, Richard W.
,
Rawal, Shruti
in
Aged
,
Aged, 80 and over
,
Angiology
2019
Background
The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown.
Methods
Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and β-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of β-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a.
Results
RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic β-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/β-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of β-MHC and hence the hypertrophic response.
Conclusion
Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.
Journal Article