Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,812 result(s) for "Hypothalamus - physiology"
Sort by:
Leptin reverses weight loss–induced changes in regional neural activity responses to visual food stimuli
Increased hunger and food intake during attempts to maintain weight loss are a critical problem in clinical management of obesity. To determine whether reduced body weight maintenance is accompanied by leptin-sensitive changes in neural activity in brain regions affecting regulatory and hedonic aspects of energy homeostasis, we examined brain region-specific neural activity elicited by food-related visual cues using functional MRI in 6 inpatient obese subjects. Subjects were assessed at their usual weight and, following stabilization at a 10% reduced body weight, while receiving either twice daily subcutaneous injections of leptin or placebo. Following weight loss, there were predictable changes in neural activity, many of which were reversed by leptin, in brain areas known to be involved in the regulatory, emotional, and cognitive control of food intake. Specifically, following weight loss there were leptin-reversible increases in neural activity in response to visual food cues in the brainstem, culmen, parahippocampal gyrus, inferior and middle frontal gyri, middle temporal gyrus, and lingual gyrus. There were also leptin-reversible decreases in activity in response to food cues in the hypothalamus, cingulate gyrus, and middle frontal gyrus. These data are consistent with a model of the weight-reduced state as one of relative leptin deficiency.
Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding
In adult mammals, the adipocyte-derived hormone leptin acts on the brain to reduce food intake by regulating the activity of neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we report that neural projection pathways from the ARH are permanently disrupted in leptin-deficient ($Lep^{ob}/Lep^{ob}$) mice and leptin treatment in adulthood does not reverse these neuroanatomical defects. However, treatment of$Lep^{ob}/Lep^{ob}$neonates with exogenous leptin rescues the development of ARH projections, and leptin promotes neurite outgrowth from ARH neurons in vitro. These results suggest that leptin plays a neurotrophic role during the development of the hypothalamus and that this activity is restricted to a neonatal critical period that precedes leptin's acute regulation of food intake in adults.
PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans
Functional magnetic resonance imaging is used to examine brain areas whose activity correlates with subsequent feeding behaviour under different satiety states evoked by intravenous peptide YY 3–36 (PYY), administration. Under high PYY conditions, (mimicking the fed state) changes in orbitofrontal cortex activation better predicted subsequent feeding, whereas in low PYY conditions, hypothalamic activation predicted food intake. The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight 1 , 2 . However, in the current ‘obesogenic’ human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions 3 . Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans 1 , 4 , 5 . Here we show, using functional magnetic resonance imaging, that peptide YY 3–36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.
Spectral quality of light modulates emotional brain responses in humans
Light therapy can be an effective treatment for mood disorders, suggesting that light is able to affect mood state in the long term. As a first step to understand this effect, we hypothesized that light might also acutely influence emotion and tested whether short exposures to light modulate emotional brain responses. During functional magnetic resonance imaging, 17 healthy volunteers listened to emotional and neutral vocal stimuli while being exposed to alternating 40-s periods of blue or green ambient light. Blue (relative to green) light increased responses to emotional stimuli in the voice area of the temporal cortex and in the hippocampus. During emotional processing, the functional connectivity between the voice area, the amygdala, and the hypothalamus was selectively enhanced in the context of blue illumination, which shows that responses to emotional stimulation in the hypothalamus and amygdala are influenced by both the decoding of vocal information in the voice area and the spectral quality of ambient light. These results demonstrate the acute influence of light and its spectral quality on emotional brain processing and identify a unique network merging affective and ambient light information.
Network-targeted transcranial direct current stimulation of the hypothalamus appetite-control network: a feasibility study
The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham ( p  = 0.039) and cathodal net-tDCS ( p  = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation ( p  = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.
Effect of flavor on neuronal responses of the hypothalamus and ventral tegmental area
Although it is well known that food intake is affected by the palatability of food, the actual effect of flavoring on regulation of energy-homeostasis and reward perception by the brain, remains unclear. We investigated the effect of ethyl-butyrate (EB), a common non-caloric food flavoring, on the blood oxygen level dependent (BOLD) response in the hypothalamus (important in regulating energy homeostasis) and ventral tegmental area (VTA; important in reward processes). The 16 study participants (18–25 years, BMI 20–23 kg/m 2 ) drank four study stimuli on separate visits using a crossover design during an fMRI setup in a randomized order. The stimuli were; plain water, water with EB, glucose solution (50gram/300 ml) and glucose solution with EB. BOLD responses to ingestion of the stimuli were determined in the hypothalamus and VTA as a measure of changes in neuronal activity after ingestion. In the hypothalamus and VTA, glucose had a significant effect on the BOLD response but EB flavoring did not. Glucose with and without EB led to similar decrease in hypothalamic BOLD response and glucose with EB resulted in a decrease in VTA BOLD response. Our results suggest that the changes in neuronal activity in the hypothalamus are mainly driven by energy ingestion and EB does not influence the hypothalamic response. Significant changes in VTA neuronal activity are elicited by energy combined with flavor.
A role for ghrelin in the central regulation of feeding
Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary 1 . Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain 2 , 3 , 4 , which is indicative of central—and as yet undefined—physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation 5 , was found in regions of primary importance in the regulation of feeding, including neuropeptide Y 6 (NPY) neurons and agouti-related protein 7 (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced 8 feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.
Acute Effects of Sceletium tortuosum (Zembrin), a Dual 5-HT Reuptake and PDE4 Inhibitor, in the Human Amygdala and its Connection to the Hypothalamus
The South African endemic plant Sceletium tortuosum has a long history of traditional use as a masticatory and medicine by San and Khoikhoi people and subsequently by European colonial farmers as a psychotropic in tincture form. Over the past decade, the plant has attracted increasing attention for its possible applications in promoting a sense of wellbeing and relieving stress in healthy individuals and for treating clinical anxiety and depression. The pharmacological actions of a standardized extract of the plant (Zembrin) have been reported to be dual PDE4 inhibition and 5-HT reuptake inhibition, a combination that has been argued to offer potential therapeutic advantages. Here we tested the acute effects of Zembrin administration in a pharmaco-fMRI study focused on anxiety-related activity in the amygdala and its connected neurocircuitry. In a double-blind, placebo-controlled, cross-over design, 16 healthy participants were scanned during performance in a perceptual-load and an emotion-matching task. Amygdala reactivity to fearful faces under low perceptual load conditions was attenuated after a single 25 mg dose of Zembrin. Follow-up connectivity analysis on the emotion-matching task showed that amygdala-hypothalamus coupling was also reduced. These results demonstrate, for the first time, the attenuating effects of S. tortuosum on the threat circuitry of the human brain and provide supporting evidence that the dual 5-HT reuptake inhibition and PDE4 inhibition of this extract might have anxiolytic potential by attenuating subcortical threat responsivity.
Oxytocin administration suppresses hypothalamic activation in response to visual food cues
The aim of this study was to use functional neuroimaging to investigate whether oxytocin modulates the neural response to visual food cues in brain regions involved in the control of food intake. Twenty-four normal weight volunteers received intranasal oxytocin (24 IU) or placebo in a double-blind, randomized crossover study. Measurements were made forty-five minutes after dosing. On two occasions, functional MRI (fMRI) scans were performed in the fasted state; the blood oxygen level-dependent (BOLD) response to images of high-calorie foods versus low-calorie foods was measured. Given its critical role in eating behaviour, the primary region of interest was the hypothalamus. Secondary analyses examined the parabrachial nuclei and other brain regions involved in food intake and food reward. Intranasal oxytocin administration suppressed hypothalamic activation to images of high-calorie compared to low-calorie food (P = 0.0125). There was also a trend towards suppression of activation in the parabrachial nucleus (P = 0.0683). No effects of intranasal oxytocin were seen in reward circuits or on ad libitum food intake. Further characterization of the effects of oxytocin on neural circuits in the hypothalamus is needed to establish the utility of targeting oxytocin signalling in obesity.
Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding
Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcription factor of NPY). Then, we demonstrate that this overexpression antagonizes the anorectic actions induced by central leptin or compound cerulenin (an inhibitor of fatty acid synthase). The overexpression of CPT-1c also blocks leptin-induced down-regulations of NPY and Bsx. Furthermore, the anorectic actions of central leptin or cerulenin are impaired in mice with brain CPT-1c deleted. Both anorectic effects require elevated levels of hypothalamic arcuate nucleus (Arc) malonyl-CoA, a fatty acid-metabolism intermediate that has emerged as a mediator in hypothalamic control of food intake. Thus, these data suggest that CPT-1c is implicated in malonyl-CoA action in leptin's hypothalamic anorectic signaling pathways. Moreover, ceramide metabolism appears to play a role in leptin's central control of feeding. Leptin treatment decreases Arc ceramide levels, with the decrease being important in leptin-induced anorectic actions and down-regulations of NPY and Bsx. Of interest, our data indicate that leptin impacts ceramide metabolism through malonyl-CoA and CPT-1c, and ceramide de novo biosynthesis acts downstream of both malonyl-CoA and CPT-1c in mediating their effects on feeding and expressions of NPY and Bsx. In summary, we provide insights into the important roles of malonyl-CoA, CPT-1c, and ceramide metabolism in leptin's hypothalamic signaling pathways.