Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
832
result(s) for
"IDS"
Sort by:
A Consolidated Decision Tree-Based Intrusion Detection System for Binary and Multiclass Imbalanced Datasets
by
Kumar, Yogesh
,
Pramanik, Moumita
,
Jhaveri, Rutvij H.
in
Accuracy
,
Algorithms
,
Artificial intelligence
2021
The widespread acceptance and increase of the Internet and mobile technologies have revolutionized our existence. On the other hand, the world is witnessing and suffering due to technologically aided crime methods. These threats, including but not limited to hacking and intrusions and are the main concern for security experts. Nevertheless, the challenges facing effective intrusion detection methods continue closely associated with the researcher’s interests. This paper’s main contribution is to present a host-based intrusion detection system using a C4.5-based detector on top of the popular Consolidated Tree Construction (CTC) algorithm, which works efficiently in the presence of class-imbalanced data. An improved version of the random sampling mechanism called Supervised Relative Random Sampling (SRRS) has been proposed to generate a balanced sample from a high-class imbalanced dataset at the detector’s pre-processing stage. Moreover, an improved multi-class feature selection mechanism has been designed and developed as a filter component to generate the IDS datasets’ ideal outstanding features for efficient intrusion detection. The proposed IDS has been validated with state-of-the-art intrusion detection systems. The results show an accuracy of 99.96% and 99.95%, considering the NSL-KDD dataset and the CICIDS2017 dataset using 34 features.
Journal Article
Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research
by
Chowdhary, Chiranji Lal
,
Pramanik, Moumita
,
Jhaveri, Rutvij H.
in
class-imbalance learning
,
classifiers ranking
,
IDS base learner
2021
Supervised learning and pattern recognition is a crucial area of research in information retrieval, knowledge engineering, image processing, medical imaging, and intrusion detection. Numerous algorithms have been designed to address such complex application domains. Despite an enormous array of supervised classifiers, researchers are yet to recognize a robust classification mechanism that accurately and quickly classifies the target dataset, especially in the field of intrusion detection systems (IDSs). Most of the existing literature considers the accuracy and false-positive rate for assessing the performance of classification algorithms. The absence of other performance measures, such as model build time, misclassification rate, and precision, should be considered the main limitation for classifier performance evaluation. This paper’s main contribution is to analyze the current literature status in the field of network intrusion detection, highlighting the number of classifiers used, dataset size, performance outputs, inferences, and research gaps. Therefore, fifty-four state-of-the-art classifiers of various different groups, i.e., Bayes, functions, lazy, rule-based, and decision tree, have been analyzed and explored in detail, considering the sixteen most popular performance measures. This research work aims to recognize a robust classifier, which is suitable for consideration as the base learner, while designing a host-based or network-based intrusion detection system. The NSLKDD, ISCXIDS2012, and CICIDS2017 datasets have been used for training and testing purposes. Furthermore, a widespread decision-making algorithm, referred to as Techniques for Order Preference by Similarity to the Ideal Solution (TOPSIS), allocated ranks to the classifiers based on observed performance reading on the concern datasets. The J48Consolidated provided the highest accuracy of 99.868%, a misclassification rate of 0.1319%, and a Kappa value of 0.998. Therefore, this classifier has been proposed as the ideal classifier for designing IDSs.
Journal Article
IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses
by
Smadi, Abdallah A.
,
Albulayhi, Khalid
,
Sheldon, Frederick T.
in
Access control
,
anomaly-based IDS
,
chemistry
2021
This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid methods. All techniques in these three categories have essentially been used in IoT environments. To date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and regression were evaluated. We studied important performance metrics and benchmark detection rates, including the requisite efficiency of the various methods. Four machine learning algorithms were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).
Journal Article
RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks
by
Derdour, Makhlouf
,
Janicke, Helge
,
Ferrag, Mohamed Amine
in
Access control
,
Accuracy
,
Algorithms
2020
This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes.
Journal Article
Minimal DFA With Optimization of Pattern Matching (MDFAOPM) for Network Traffic Analysis and Attacks
2025
IIn today's network security, network intrusion detection systems (NIDS) play an increasingly crucial role in detecting and averting harmful network attacks. This study presents an innovative and efficient string-matching algorithm, called Minimal Deterministic Finite Automata with Optimization of Pattern Matching (MDFAOPM), that has the benefits of high performance, compact memory and Time analysis. The suggested MDFAOPM, whether it is implemented in software or hardware, considerably reduces the memory required without sacrificing high performance by utilizing the magic state properties found from deterministic finite state automata. Additionally, the MDFAOPM algorithm has great flexibility in that it may be adjusted to meet particular resource and performance requirements. The experimental findings demonstrate that MDFAOPM outperforms other systems by more than 21.25% in hardware implementation and 21 times in software implementation compared to Deterministic Finite Automata (DFA).
Journal Article
Review on intrusion detection system for IoT/IIoT -brief study
by
Bansal, Komal
,
Singhrova, Anita
in
Automation
,
Computer Communication Networks
,
Computer Science
2024
Recently, the Internet of Thing’s (IoT’s) rising popularity is offering a promising opportunity not just aimed at the diverse home automation systems’ expansion however as well aimed at diverse industrial applications. By leveraging these advantages, automation is implemented in the industries resulting in the Industrial IoT (IIoT). Even though IoT/IIoT simplifies the daily activities that benefit human operations, they cause severe security challenges that are worth focusing on. Consequently, IoT/IIoT yields effective and efficient solutions by implementing an Intrusion Detection System (IDS). The IDS is a solution aimed at addressing the security and privacy challenges of detecting diverse IoT/IIoT attacks. Diverse IDS methodologies are employed aimed at identifying intrusion within the data however still require enhancement on the detection system. A literature survey regarding the IDS in the IoT/IIoT topic is offered that largely concentrated on the research’s present state by evaluating the literature, discovering the existent trends, and offering open problems and upcoming directions.
Journal Article
Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: a survey
by
Dawit, Nahom Aron
,
Mathew, Sujith Samuel
,
Hayawi, Kadhim
in
Access control
,
Actuators
,
Blockchain
2022
The advent of the Industrial Internet of Things (IIoT) integrates all manners of computing technologies, from tiny actuators to process-intensive servers. The distributed network of IoT devices relies on centralized architecture to compensate for their lack of resources. Within this complex network, it is crucial to ensure the security and privacy of data in the IIoT systems as they involve real-time functions that manage people’s movement and industrial materials like chemicals, radio-active goods, and large equipment. Intrusion Detection Systems (IDS) have been widely used to detect and thwart cyber-attacks on such systems. However, these are inefficient for the multi-layered IIoT networks which include heterogeneous protocol standards and topologies. With the need for a novel security method, the integration of collaborative IDS (CIDS) and blockchain has become a disruptive technology to ensure secure and trustable network transactions. Which detection methodology is suitable for this integration, and IIoT? Will blockchain render IIoT completely immune to cyber-attacks? In this paper, we provide a comprehensive review of the state of the art, analyze, and classify the integration approaches of CIDS and blockchain, and discuss suitable approaches for securing IIoT systems. We also categorize the major blockchain vulnerabilities with their potential losses to expose significant gaps for future research directions.
Journal Article
Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture
2020
With the rapid development and popularization of Internet of Things (IoT) devices, an increasing number of cyber-attacks are targeting such devices. It was said that most of the attacks in IoT environments are botnet-based attacks. Many security weaknesses still exist on the IoT devices because most of them have not enough memory and computational resource for robust security mechanisms. Moreover, many existing rule-based detection systems can be circumvented by attackers. In this study, we proposed a machine learning (ML)-based botnet attack detection framework with sequential detection architecture. An efficient feature selection approach is adopted to implement a lightweight detection system with a high performance. The overall detection performance achieves around 99% for the botnet attack detection using three different ML algorithms, including artificial neural network (ANN), J48 decision tree, and Naïve Bayes. The experiment result indicates that the proposed architecture can effectively detect botnet-based attacks, and also can be extended with corresponding sub-engines for new kinds of attacks.
Journal Article
Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms
by
Altulaihan, Esra
,
Almaiah, Mohammed Amin
,
Aljughaiman, Ahmed
in
Access control
,
Algorithms
,
Automation
2024
Widespread and ever-increasing cybersecurity attacks against Internet of Things (IoT) systems are causing a wide range of problems for individuals and organizations. The IoT is self-configuring and open, making it vulnerable to insider and outsider attacks. In the IoT, devices are designed to self-configure, enabling them to connect to networks autonomously without extensive manual configuration. By using various protocols, technologies, and automated processes, self-configuring IoT devices are able to seamlessly connect to networks, discover services, and adapt their configurations without requiring manual intervention or setup. Users’ security and privacy may be compromised by attackers seeking to obtain access to their personal information, create monetary losses, and spy on them. A Denial of Service (DoS) attack is one of the most devastating attacks against IoT systems because it prevents legitimate users from accessing services. A cyberattack of this type can significantly damage IoT services and smart environment applications in an IoT network. As a result, securing IoT systems has become an increasingly significant concern. Therefore, in this study, we propose an IDS defense mechanism to improve the security of IoT networks against DoS attacks using anomaly detection and machine learning (ML). Anomaly detection is used in the proposed IDS to continuously monitor network traffic for deviations from normal profiles. For that purpose, we used four types of supervised classifier algorithms, namely, Decision Tree (DT), Random Forest (RF), K Nearest Neighbor (kNN), and Support Vector Machine (SVM). In addition, we utilized two types of feature selection algorithms, the Correlation-based Feature Selection (CFS) algorithm and the Genetic Algorithm (GA) and compared their performances. We also utilized the IoTID20 dataset, one of the most recent for detecting anomalous activity in IoT networks, to train our model. The best performances were obtained with DT and RF classifiers when they were trained with features selected by GA. However, other metrics, such as training and testing times, showed that DT was superior.
Journal Article
AS-IDS: Anomaly and Signature Based IDS for the Internet of Things
2021
The Internet of Things (IoT) is a massively extensive environment that can manage many diverse applications. Security is critical due to potential malicious threats and the diversity of the connectivity. Devices can protect themselves and detect threats with the Intrusion Detection System (IDS). IDS typically uses one of two approaches: anomaly-based or signature-based. This paper proposes a model (known as “AS-IDS”) that combines these two approaches to detect known and unknown attacks in IoT networks. The proposed model has three phases: traffic filtering, preprocessing and the hybrid IDS. In the first phase, the arrival traffic is filtered at the IoT gateway by matching packet features, after which the preprocessing phase applies a Target Encoder, Z-score and Discrete Hessian Eigenmap (DHE) to encode, normalize and eliminate redundancy, respectively. In the final phase, the hybrid IDS integrates signatures and anomalies. The signature-based IDS subsystem investigates packets with Lightweight Neural Network (LightNet), which uses Human Mental Search (HMS) for traffic clustering in the hidden layer and Boyer Moore is used to search for a particular signature in the output layer that is accelerated by using the Generalized Suffix Tree (GST) algorithm and by matching the signatures it classifies the attacks as intruder, normal or unknown. The anomaly-based IDS subsystem employs Deep Q-learning to identify unknown attacks, and uses Signal to Noise Ratio (SNR) and bandwidth to classify the attacks into five classes: Denial of Service (DoS), Probe, User-to-Root (U2R), Remote-to-Local (R2L), and normal traffic. Detected packets are then generated with new signatures, using the Position Aware Distribution Signature (PADS) algorithm. The proposed AS-IDS is implemented in real-time traffic with the NSL-KDD dataset, and the results are evaluated in terms of Detection Rate (DR), False Alarm Rate (FAR), Specificity, F-measure and computation time.
Journal Article