Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
174 result(s) for "IGCP"
Sort by:
Impact of climate change on New York City’s coastal flood hazard
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.
When Life Got Smart: The Evolution of Behavioral Complexity Through the Ediacaran and Early Cambrian of NW Canada
Ediacaran and early Cambrian strata in NW Canada contain abundant trace fossils that record the progressive development of complex behavior in early animal evolution. Five feeding groups can be recognized: microbial grazing, deposit-feeding, deposit-feeding/predatory, filter-feeding/predatory, and arthropod tracks and trails. The lower Blueflower Formation (ca. 560–550 Ma) contains abundant burrows that completely cover bedding surfaces with small (∼1 mm diameter) cylindrical burrows that were strictly restricted to microbial bedding surfaces and exhibited only primitive and inconsistent avoidance strategies. The upper Blueflower contains three-dimensional avoidance burrows and rare filter-feeding or possibly predatory burrows, suggesting increased behavioral responses in food gathering that marked the beginning of the agronomic revolution in substrate utilization. Cambrian strata of the Ingta Formation contain systematically meandering burrows and more diverse feeding strategies, including the onset of treptichnid probing burrows that may reflect predation. These observations imply that Ediacaran burrowers were largely characterized by crude, two-dimensional avoidance meanders that represented simple behavioral responses of individual burrowers to sensory information, and that the subsequent development of more diverse and complex feeding patterns with genetically programmed search pathways occurred during the earliest stages of the Cambrian explosion. These observations further imply that changes occurred in both the food source and substrate during the ecological transition from Proterozoic matgrounds to Phanerozoic mixgrounds.
The IGCP 714 Project “3GEO – Geoclimbing & Geotrekking in Geoparks” – Selection of Geodiversity Sites Equipped for Climbing for Combining Outdoor and Multimedia Activities
The IGCP 714 project “3GEO – Geoclimbing & Geotrekking in Geoparks ” is financed by the International Geoscience Programme (IGCP) and supported by the International Union of Geological Sciences (IUGS). In this paper, we report on the results of the first phase of the project focused on the criteria to be adopted to select geodiversity sites equipped for climbing or trekking. The selection of geoclimbing sites and geotrekking routes is aimed at combining multimedia tools and outdoor activities for Geosciences promotion and conservation in UNESCO Global Geoparks, aspiring geoparks or geoparks project, and also in protected areas featuring geoheritage sites. Indeed, both outdoor activities and multimedia tools favour the pursuing of many of the United Nations Sustainable Development Goals (e.g., 3, 4, 8, 11). An international consortium of geoscientists from 12 different countries selected, through the proposed procedure, 22 geoclimbing sites, and then they also detected 30 geotrekking routes mirroring Earth geodiversity. At some test sites (geoclimbing and geotrekking) multimedia tools and digital outcrop models have been developed through different methodological approaches (e.g., Structure from Motion and Multi-View Stereo photogrammetry), to open the way to the second part of the project still in progress. These sites and the relative virtual models are herein also shown. The final aim of the IGCP 714 project is indeed to create an open data repository (digital outcrop models, videos, virtual tours, photos, scientific information, and interpretations) to upload data of the selected sites to mirror Earth geodiversity for different users including tourists and school groups.
The trilobite assemblage of the Declivolithus Fauna (lower Katian, Ordovician) of Morocco: a review with new data
Intense commercial exploitation of fossils in the famous El Qaid Errami area in the last 20 years has led to the discovery of the interesting Declivolithus Fauna in the Moroccan Anti-Atlas. This unusually large trinucleid trilobite, described originally from the Czech Republic, is the most conspicuous element of an assemblage mainly occurring in the Bofloss locality, a local biofacies development of pelagic mudstones and sandstones cropping out in a structurally isolated place in the Tizi n'Ounfite area. Here we revise this Declivolithus Fauna trilobite assemblage from Morocco, increasing the known trilobite diversity from four to 11 species: Ulugtella? biformis n. sp., Selenopeltis cf. S. vultuosa, Phacopidina quadrata, Eudolatites cf. E. bondoni, Prionocheilus cf. P. verneuili, Nobiliasaphus cf. N. kumatox, Cyclopyge cf. C. rediviva, Symphysops stevaninae, Heterocyclopyge sp., Dionide sp., and Declivolithus alfredi. The new data and the very good preservation of specimens in sandstones, clarify the specific identity of previously reported taxa. Although the stratigraphical correlation of the fossiliferous levels remains problematic, it probably corresponds to the upper part of the Lower Ktaoua Formation or to the lower half of the Upper Tiouririne Formation. Most taxa support previous assignment of the Moroccan assemblage to the late Berounian (ca. early Katian, Ka2), although a middle Berounian (ca. Sa2–Ka1) age cannot be excluded. Most of the identified species are known from the Czech Republic (eight out of 11), showing that the strong faunal link between Morocco and the Czech Republic still existed during the Late Ordovician, being stronger than the link with the coeval Ibero-Armorican domain faunas. UUID: http://zoobank.org/3e6e55c7-168d-4008-98ba-38a795581ca3
First occurrence of well-preserved Ordovician trilobites of the family Olenidae from Africa
Here we describe the first articulated olenid trilobite specimens recovered from the lowermost Fezouata Shale Formation (lower Tremadocian, Ordovician) of Morocco. Prior to the discovery of this sample, only two partial olenid trilobite specimens had been found from this part of the rock record. The specimens are well preserved enough to confidently identify as Leptoplastides salteri (Callaway, 1877), extending the species geographic range from Avalonia into Gondwana. We argue that the Moroccan occurrences formerly referred to as “Beltella sp.” in the literature are likely to be those of L. salteri. This species is the only olenid trilobite known from African Gondwana.
First record of the Parabolina Fauna in the Cambrian (Furongian) of Alborz, northern Iran
A small trilobite assemblage, including Parabolina (Neoparabolina) frequens, assignable to the Parabolina Fauna, has been recovered from the Furongian (Cambrian Stage 10) Sah Member of the Mila Formation in the Tuyeh–Darvar section, the eastern Alborz Mountains, north Iran. The assemblage includes eight genera and species; two of them, Niobella darvarensis n. sp. and Macropyge (Promacropyge) sahensis n. sp., are new to science. The incursion of a Parabolina fauna into Alborz is confined to a significant drowning event with associated dark-gray shale deposition, which most probably occurred in the lower part of the Cordylodus proavus conodont Zone. While the generic composition of the assemblage is mostly cosmopolitan with the exception of the endemic Alborsella, the occurrence of Indiligens, Macropyge (Promacropyge) sahensis n. sp., Agnostotes sp. aff. A. sulcatus, and Leiagnostus bexelli indicates faunal links with South China and Tarim. Parabolina (Neoparabolina) frequens is widespread mainly in offshore deposits from temperate Gondwana (Armorican terrane assemblage, Argentina) and Baltica of about that age. UUID: http://zoobank.org/6b3118d0-5907-41b9-af44-cee838c5e630
A new genus and species of cornulitid tubeworm from the Hirnantian (Late Ordovician) of Estonia
Tubeworms form an important part of the modern marine fauna. They were also common in the geological past. We discovered a new genus and species of tubeworms from the latest Ordovician of Estonia. These tubeworms grew on the lithified sea floor during the time of the end-Ordovician mass extinction. Our discovery helps better understand and reconstruct the marine life during this extraordinary time interval. A new cornulitid genus and species, Porkuniconchus fragilis new genus and species, is here described from the Ärina Formation (Hirnantian, Porkuni Regional Stage) of northern Estonia. This new taxon differs from most cornulitids by having a fusiform ornamentation pattern that is somewhat similar to that of Kolihaia. All studied specimens are attached to a carbonate hardground. The hardground fauna is by abundance and encrustation area dominated by cornulitids. Other encrusters are represented only by a single sheet-like cystoporate bryozoan. The cornulitid specimens represent different growth stages, which suggest that the hardground was continuously colonized by cornulitid larvae. The high encrustation density indicates that the studied hardground may have represented a high-productivity site in the Hirnantian of the Baltic Basin.
Deep-Water Ediacaran Fossils from Northwestern Canada: Taphonomy, Ecology, and Evolution
Impressions of soft-bodied Ediacaran megafossils are common in deep-water slope deposits of the June beds at Sekwi Brook in the Mackenzie Mountains of NW Canada. Two taphonomic assemblages can be recognized. Soles of turbidite beds contain numerous impressions of simple (Aspidella) and tentaculate (Hiemalora, Eoporpita) discs. A specimen of the frond Primocandelabrum is attached to an Aspidella-like holdfast, but most holdfast discs lack any impressions of the leafy fronds to which they were attached, reflecting Fermeuse-style preservation of the basal level of the community. Epifaunal fronds (Beothukis, Charnia, Charniodiscus) and benthic recliners (Fractofusus) were most commonly preserved intrastratally on horizontal parting surfaces within turbidite and contourite beds, reflecting a deep-water example of Nama-style preservation of higher levels in the community. A well-preserved specimen of Namalia significantly extends the known age and environmental range of erniettomorphs into deep-water aphotic settings. Infaunal bilaterian burrows are absent from the June beds despite favorable beds for their preservation. The June beds assemblage is broadly similar in age and environment to deep-water Avalonian assemblages in Newfoundland and England, and like them contains mainly rangeomorph and arboreomorph fossils and apparently lacks dickinsoniomorphs and other clades typical of younger and shallower Ediacaran assemblages. Fossil data presently available imply that the classically deep- and shallow-water taxa of the Ediacara biota had different evolutionary origins and histories, with sessile rangeomorphs and arboreomorphs appearing in deep-water settings approximately 580 million years ago and spreading into shallow-water settings by 555 Ma but dickinsoniomorphs and other iconic clades restricted to shallow-water settings from their first known appearance at 555 Ma until their disappearance prior to the end of the Ediacaran.
Conulariid soft parts replicated in silica from the Scotch Grove Formation (lower Middle Silurian) of east-central Iowa
Two specimens of Metaconularia manni (Roy, 1935) from the lower Middle Silurian Scotch Grove Formation (eastern Iowa) exhibit well-defined, relict soft parts replicated in silica. One of these specimens bears phosphatic periderm, whereas the other specimen is a mold. Present within the erect, undistorted apical region of the specimen preserving periderm, on opposite sides of the peridermal cavity, are two small, elongate masses of silica located near the midlines of two of the four faces. Present in the central portion of the other specimen, at a somewhat greater distance from the apex, are five pairs of hollow, elongate, keeled pouch-like bodies (hereafter pouches), the long axes of which converge on the center of the fossil. Each pair of pouches is associated with a short, narrow, gently curved or broadly U-shaped tube, also composed of silica. Additionally, two of the pouch/tube combinations are associated with a pair of rectilinear furrows that correspond to the paired internal carinae that straddled the conulariid's facial midlines. We interpret the paired pouches and short tubes in the moldic specimen as relic conulariid soft parts homologous, respectively, to the interradial gonads and retractor muscles of extant, stauromedusan and polypoid scyphozoan cnidarians. Unlike most conulariids, which exhibit four faces, this individual had five faces, an aberrant morphology known in one other conulariid. The two small masses in the other specimen are more difficult to interpret, but they, too, could be relic gonads or longitudinal muscles. These interpretations suggest that, as in certain extant scyphozoans, at least one conulariid lost the free-living, sexual medusoid life phase.
Micro-CT analysis of Katian radiolarians from the Malongulli Formation, New South Wales, Australia, and implications for skeletogenesis
A diverse and well-preserved radiolarian assemblage from the Malongulli Formation, New South Wales, Australia, contains 13 species representing 10 genera and six families. One new genus, Wiradjuri, is introduced to accommodate pre-Devonian single-shelled entactiniid taxa, and one new species, Secuicollacta malongulliensis, is recorded together with some previously described forms. The microstructures of the “rotasphaerid structure/primary unit” and the “ectopic spicule” are investigated to validate their roles as fundamental units in the Secuicollactidae, together with comprehensive documentation of the previously enigmatic Pseudorotasphaera internal skeleton. The results of this investigation suggest that, among all radiolarian genera that survived the Late Ordovician Mass Extinction event (LOME) and transitioned into the Silurian, Secuicollacta, Haplotaeniatum, and Palaeoephippium maintained stable body plans during the transition and were more successfully established. The selective advantages these lineages had during the LOME were most likely spontaneous outcomes of the mode of structural development involving sequential skeletogenesis and a tendency to evolve toward simpler body plans.